Ontology highlight
ABSTRACT: Purpose
Tumor mutational burden (TMB) has emerged as a potential predictive biomarker for clinical response to ICI therapy, but whether TMB also predicts toxicity remains unknown. We investigated the relationship between TMB, objective response rate (ORR), overall survival (OS), and toxicity for ICI therapy across multiple cancer types.Experimental design
We searched MEDLINE, PubMed, and ASCO/ESMO/AACR meetings for clinical trials of anti-PD(L)1, CTLA-4, or combination in 29 cancer types. We assessed ICI administered, responses (complete or partial response), median OS, OS HR, and grade 3/4 toxicity. We conducted a systematic review, meta-analysis and meta-regression using tumor level TMB data from Foundation Medicine.Results
One hundred seventeen clinical trials, which included 12,450 patients treated with ICI therapy were analyzed. Meta-regression analysis revealed that TMB was significantly associated with ORR for anti-PD(L)1, anti-CTLA-4, and combination (P < 0.0001 for all), but not associated with toxicity in all treatment groups. OS data were unavailable for most studies included in our meta-analysis, and the relationship between TMB and OS in this subset was not significant (P = 0.26). In high TMB tumor types (?10 mut/megabase) the improvement of ORR and increase in grade 3/4 toxicity with combination ICI therapy as compared with PD(L)1 monotherapy were 21.13% and 25.41%, respectively, as compared with 3.73% and 18.78% in low TMB tumor types (<10 mut/megabase).Conclusions
There is a positive association between TMB and clinical response with anti-PD(L)1, anti-CTLA-4, and combination ICIs, but no association between TMB and toxicity. These results imply a favorable risk/benefit ratio for ICIs in tumors with a higher TMB.
SUBMITTER: Osipov A
PROVIDER: S-EPMC7501151 | biostudies-literature |
REPOSITORIES: biostudies-literature