Deficits in Glutamic Acid Decarboxylase 67 Immunoreactivity, Parvalbumin Interneurons, and Perineuronal Nets in the Inferior Colliculus of Subjects With Schizophrenia.
Ontology highlight
ABSTRACT: Aberrant processing of auditory stimuli is a prominent feature of schizophrenia (SZ). Prior studies have chronicled histological abnormalities in the auditory cortex of SZ subjects, but whether deficits exist at upstream, subcortical levels has yet to be established. En route to the auditory cortex, ascending information is integrated in the inferior colliculus (IC), a highly gamma amino butyric acid (GABA) ergic midbrain structure that is critically involved in auditory processing. The IC contains a dense population of parvalbumin-immunoreactive interneurons (PVIs), a cell type characterized by increased metabolic demands and enhanced vulnerability to oxidative stress. During development, PVIs are preferentially surrounded by perineuronal nets (PNNs), specialized extracellular matrix structures that promote redox homeostasis and excitatory/inhibitory balance. Moreover, in SZ, deficits in PVIs, PNNs, and the GABA synthesizing enzyme, glutamic acid decarboxylase (Gad67), have been extensively documented in cortical regions. Yet, whether similar impairments exist in the IC is currently unknown. Thus, we compared IC samples of age- and sex-matched pairs of SZ and unaffected control subjects. SZ subjects exhibited lower levels of Gad67 immunoreactivity and a decreased density of PVIs and PNNs within the IC. These findings provide the first histological evidence of IC GABAergic abnormalities in SZ and suggest that SZ-related auditory dysfunction may stem, in part, from altered IC inhibitory tone.
SUBMITTER: Kilonzo VW
PROVIDER: S-EPMC7505180 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA