Unknown

Dataset Information

0

Simultaneous Indoor Pedestrian Localization and House Mapping Based on Inertial Measurement Unit and Bluetooth Low-Energy Beacon Data.


ABSTRACT: Indoor location estimation is crucial to provide context-based assistance in home environments. In this study, a method for simultaneous indoor pedestrian localization and house mapping is proposed and evaluated. The method fuses a person's movement data from an Inertial Measurement Unit (IMU) with proximity and activity-related data from Bluetooth Low-Energy (BLE) beacons deployed in the indoor environment. The person's and beacons' localization is performed simultaneously using a combination of particle and Kalman Filters. We evaluated the method using data from eight participants who performed different activities in an indoor environment. As a result, the average participant's localization error was 1.05 ± 0.44 m, and the average beacons' localization error was 0.82 ± 0.24 m. The proposed method is able to construct a map of the indoor environment by localizing the BLE beacons and simultaneously locating the person. The results obtained demonstrate that the proposed method could point to a promising roadmap towards the development of simultaneous localization and home mapping system based only on one IMU and a few BLE beacons. To the best of our knowledge, this is the first method that includes the beacons' data movement as activity-related events in a method for pedestrian Simultaneous Localization and Mapping (SLAM).

SUBMITTER: Ceron JD 

PROVIDER: S-EPMC7506668 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Simultaneous Indoor Pedestrian Localization and House Mapping Based on Inertial Measurement Unit and Bluetooth Low-Energy Beacon Data.

Ceron Jesus D JD   Kluge Felix F   Küderle Arne A   Eskofier Bjoern M BM   López Diego M DM  

Sensors (Basel, Switzerland) 20200822 17


Indoor location estimation is crucial to provide context-based assistance in home environments. In this study, a method for simultaneous indoor pedestrian localization and house mapping is proposed and evaluated. The method fuses a person's movement data from an Inertial Measurement Unit (IMU) with proximity and activity-related data from Bluetooth Low-Energy (BLE) beacons deployed in the indoor environment. The person's and beacons' localization is performed simultaneously using a combination o  ...[more]

Similar Datasets

| S-EPMC8384715 | biostudies-literature
| S-EPMC7245539 | biostudies-literature
| S-EPMC5751565 | biostudies-literature
| S-EPMC6308497 | biostudies-literature
| S-EPMC9394823 | biostudies-literature
| S-EPMC7096551 | biostudies-literature
| S-EPMC7739800 | biostudies-literature
| S-EPMC8483374 | biostudies-literature
| S-EPMC11359420 | biostudies-literature
| S-EPMC5712795 | biostudies-literature