Unknown

Dataset Information

0

Cooperative Transport and Selective Extraction of Sulfates by a Squaramide-Based Ion Pair Receptor: A Case of Adaptable Selectivity.


ABSTRACT: The use of a squaramide-based ion pair receptor offers a solution to the very challenging problem of extraction and transport of extremely hydrated sulfate salt. Herein we demonstrate for the first time that a neutral receptor is able not only to selectively extract but also to transport sulfates in the form of an alkali metal salt across membranes and to do so in a cooperative manner while overcoming the Hofmeister bias. This was made possible by an enhancement in anion binding promoted by cation assistance and by diversifying the stoichiometry of receptor complexes with sulfates and other ions. The existence of a peculiar 4:1 complex of receptor 2 with sulfates in solution was confirmed by UV-vis and 1H NMR titration experiments, DOSY and DLS measurements, and supported by solid-state X-ray measurements. By varying the separation technique and experimental conditions, it was possible to switch the depletion of the aqueous layer into extremely hydrophilic or less lipophilic salts, thus obtaining the desired selectivity.

SUBMITTER: Zaleskaya M 

PROVIDER: S-EPMC7509838 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cooperative Transport and Selective Extraction of Sulfates by a Squaramide-Based Ion Pair Receptor: A Case of Adaptable Selectivity.

Zaleskaya Marta M   Karbarz Marcin M   Wilczek Marcin M   Dobrzycki Łukasz Ł   Romański Jan J  

Inorganic chemistry 20200904 18


The use of a squaramide-based ion pair receptor offers a solution to the very challenging problem of extraction and transport of extremely hydrated sulfate salt. Herein we demonstrate for the first time that a neutral receptor is able not only to selectively extract but also to transport sulfates in the form of an alkali metal salt across membranes and to do so in a cooperative manner while overcoming the Hofmeister bias. This was made possible by an enhancement in anion binding promoted by cati  ...[more]

Similar Datasets

| S-EPMC8125518 | biostudies-literature
| S-EPMC10946609 | biostudies-literature
| S-EPMC7764408 | biostudies-literature
| S-EPMC6979319 | biostudies-literature
| S-EPMC11317791 | biostudies-literature
| S-EPMC9163109 | biostudies-literature
| S-EPMC6751181 | biostudies-literature
| S-EPMC7688318 | biostudies-literature
| S-EPMC5803205 | biostudies-literature
| S-EPMC3449104 | biostudies-literature