Unknown

Dataset Information

0

Molecular tests support the viability of rare earth elements as proxies for fossil biomolecule preservation.


ABSTRACT: The rare earth element (REE) composition of a fossil bone reflects its chemical alteration during diagenesis. Consequently, fossils presenting low REE concentrations and/or REE profiles indicative of simple diffusion, signifying minimal alteration, have been proposed as ideal candidates for paleomolecular investigation. We directly tested this prediction by conducting multiple biomolecular assays on a well-preserved fibula of the dinosaur Edmontosaurus from the Cretaceous Hell Creek Formation previously found to exhibit low REE concentrations and steeply-declining REE profiles. Gel electrophoresis identified the presence of organic material in this specimen, and subsequent immunofluorescence and enzyme-linked immunosorbant assays identified preservation of epitopes of the structural protein collagen I. Our results thereby support the utility of REE profiles as proxies for soft tissue and biomolecular preservation in fossil bones. Based on considerations of trace element taphonomy, we also draw predictions as to the biomolecular recovery potential of additional REE profile types exhibited by fossil bones.

SUBMITTER: Ullmann PV 

PROVIDER: S-EPMC7511940 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Molecular tests support the viability of rare earth elements as proxies for fossil biomolecule preservation.

Ullmann Paul V PV   Voegele Kristyn K KK   Grandstaff David E DE   Ash Richard D RD   Zheng Wenxia W   Schroeter Elena R ER   Schweitzer Mary H MH   Lacovara Kenneth J KJ  

Scientific reports 20200923 1


The rare earth element (REE) composition of a fossil bone reflects its chemical alteration during diagenesis. Consequently, fossils presenting low REE concentrations and/or REE profiles indicative of simple diffusion, signifying minimal alteration, have been proposed as ideal candidates for paleomolecular investigation. We directly tested this prediction by conducting multiple biomolecular assays on a well-preserved fibula of the dinosaur Edmontosaurus from the Cretaceous Hell Creek Formation pr  ...[more]

Similar Datasets

| S-EPMC8827657 | biostudies-literature
2019-01-21 | PXD011842 | Pride
| S-EPMC4156694 | biostudies-literature
| S-EPMC6277846 | biostudies-literature
| S-EPMC7463018 | biostudies-literature
| S-EPMC9202298 | biostudies-literature
2021-06-14 | GSE176268 | GEO
2023-07-23 | GSE237657 | GEO
| S-EPMC4413328 | biostudies-other
| S-EPMC6471397 | biostudies-literature