Project description:Respiratory infections, like the current COVID-19 pandemic, target epithelial cells in the respiratory tract. Alveolar macrophages (AMs) are tissue-resident macrophages located within the lung. They play a key role in the early phases of an immune response to respiratory viruses. AMs are likely the first immune cells to encounter SARS-CoV-2 during an infection and their reaction to the virus will have a profound impact on the outcome of the infection. Interferons (IFNs) are antiviral cytokines and among the first cytokines produced upon viral infection. In this study, AMs from non-infectious donors are challenged with SARS-CoV-2. We demonstrate that challenged AMs are incapable of sensing SARS-CoV-2 and of producing an IFN response in contrast to other respiratory viruses, like influenza A virus and Sendai virus, which trigger a robust IFN response. The absence of IFN production in AMs upon challenge with SARS-CoV2 could explain the initial asymptotic phase observed during COVID-19 and argues against AMs being the sources of proinflammatory cytokines later during infection.
Project description:The author apply concepts and tools from evolutionary medicine to understanding the SARS-CoV-2 pandemic. The pandemic represents a mismatched conflict, with dynamics and pathology apparently driven by three main factors: (i) bat immune systems that rely on low inflammation but high efficacy of interferon-based defenses; (ii) viral tactics that differentially target the human interferon system, leading to substantial asymptomatic and pre-symptomatic transmission; and (ii) high mortality caused by hyper-inflammatory and hyper-coagulatory phenotypes, that represent dysregulated tradeoffs whereby collateral immune-induced damage becomes systemic and severe. This framework can explain the association of mortality with age (which involves immune life-history shifts towards higher inflammation and coagulation and reduced adaptive immunity), and sex (since males senesce faster than females). Genetic-risk factors for COVID-19 mortality can be shown, from a phenome-wide association analysis of the relevant SNPs, to be associated with inflammation and coagulation; the phenome-wide association study also provides evidence, consistent with several previous studies, that the calcium channel blocking drug amlodipine mediates risk of mortality. Lay Summary: SARS-CoV-2 is a bat virus that jumped into humans. The virus is adapted to bat immune systems, where it evolved to suppress the immune defenses (interferons) that mammals use to tell that they are infected. In humans, the virus can apparently spread effectively in the body with a delay in the production of symptoms and the initiation of immune responses. This delay may then promote overactive immune responses, when the virus is detected, that damage the body as a side effect. Older people are more vulnerable to the virus because they are less adapted to novel infectious agents, and invest less in immune defense, compared to younger people. Genes that increase risk of mortality from SARS-CoV-2 are functionally associated with a drug called amlodipine, which may represent a useful treatment.
Project description:The outbreak of a novel coronavirus associated with acute respiratory disease, called COVID-19, marked the introduction of the third spillover of an animal coronavirus (CoV) to humans in the last two decades. The genome analysis with various bioinformatics tools revealed that the causative pathogen (SARS-CoV-2) belongs to the subgenus Sarbecovirus of the genus Betacoronavirus, with highly similar genome as bat coronavirus and receptor-binding domain (RBD) of spike glycoprotein as Malayan pangolin coronavirus. Based on its genetic proximity, SARS-CoV-2 is likely to have originated from bat-derived CoV and transmitted to humans via an unknown intermediate mammalian host, probably Malayan pangolin. Further, spike protein S1/S2 cleavage site of SARS-CoV-2 has acquired polybasic furin cleavage site which is absent in bat and pangolin suggesting natural selection either in an animal host before zoonotic transfer or in humans following zoonotic transfer. In the current review, we recapitulate a preliminary opinion about the disease, origin and life cycle of SARS-CoV-2, roles of virus proteins in pathogenesis, commonalities, and differences between different corona viruses. Moreover, the crystal structures of SARS-CoV-2 proteins with unique characteristics differentiating it from other CoVs are discussed. Our review also provides comprehensive information on the molecular aspects of SARS-CoV-2 including secondary structures in the genome and protein-protein interactions which can be useful to understand the aggressive spread of the SARS-CoV-2. The mutations and the haplotypes reported in the SARS-CoV-2 genome are summarized to understand the virus evolution.
Project description:Globally, the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appeared to have a milder clinical course in children compared to adults. As severe forms of COVID-19 in adults included an aberrant systemic immune response, children with chronic systemic inflammatory diseases were cautiously followed. No evidence for a specific susceptibility was identified in this pediatric population. European and US Pediatricians started to notice cases of myocarditis, sharing some features with toxic shock syndrome, Kawasaki disease, and macrophage activation syndrome in otherwise healthy patients. Multisystem Inflammatory Syndrome in Children (MIS-C) and Pediatric Inflammatory Multisystem Syndrome (PIMS) have designated this new entity in the US and Europe, respectively. The spectrum of severity ranged from standard hospitalization to pediatric intensive care unit management. Most patients had a clinical history of exposure to COVID-19 patients and/or SARS-COV2 biological diagnosis. Clinical presentations include fever, cardiac involvement, gastro-intestinal symptoms, mucocutaneous manifestations, hematological features, or other organ dysfunctions. The temporal association between the pandemic peaks and outbreaks of PIMS seems to be in favor of a post-infectious, immune-mediated mechanism. Thus, SARS-CoV2 can rarely be associated with severe systemic inflammatory manifestations in previously healthy children differently from adults highlighting the specific need for COVID-19 research in the pediatric population.
Project description:From 9 March to 3 May 2020, lockdown was declared in Italy due to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Our aim was to evaluate how the SARS-CoV-2 pandemic and related preventive strategies affected pediatric emergency rooms (ERs) during this period. We performed a retrospective cohort multicenter study, comparing the lockdown period to the corresponding period in 2019. We examined 15 Italian pediatric ERs in terms of visit rates, specific diagnoses (grouped as air communicable diseases and non-air communicable diseases), and triage categories. During the lockdown period, ER admissions decreased by 81% compared to 2019 (52,364 vs. 10,112). All ER specific diagnoses decreased in 2020 and this reduction was significantly higher for air communicable diseases (25,462 vs. 2934, p < 0.001). Considering the triage category, red codes remained similar (1% vs. 1%), yellow codes increased (11.2% vs. 22.3%), and green codes decreased (80.3% vs. 69.5%). We can speculate that social distancing and simple hygiene measures drastically reduced the spread of air communicable diseases. The increase in yellow codes may have been related to a delay in primary care and, consequently, in ER admissions.
Project description:The pandemic of COVID-19 is a severe threat to human life and the global economy. Despite the success of vaccination efforts in reducing the spread of the virus, the situation remains largely uncontrolled due to the random mutation in the RNA sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which demands different variants of effective drugs. Disease-causing gene-mediated proteins are usually used as receptors to explore effective drug molecules. In this study, we analyzed two different RNA-Seq and one microarray gene expression profile datasets by integrating EdgeR, LIMMA, weighted gene co-expression network and robust rank aggregation approaches, which revealed SARS-CoV-2 infection causing eight hub-genes (HubGs) including HubGs; REL, AURKA, AURKB, FBXL3, OAS1, STAT4, MMP2 and IL6 as the host genomic biomarkers. Gene Ontology and pathway enrichment analyses of HubGs significantly enriched some crucial biological processes, molecular functions, cellular components and signaling pathways that are associated with the mechanisms of SARS-CoV-2 infections. Regulatory network analysis identified top-ranked 5 TFs (SRF, PBX1, MEIS1, ESR1 and MYC) and 5 miRNAs (hsa-miR-106b-5p, hsa-miR-20b-5p, hsa-miR-93-5p, hsa-miR-106a-5p and hsa-miR-20a-5p) as the key transcriptional and post-transcriptional regulators of HubGs. Then, we conducted a molecular docking analysis to determine potential drug candidates that could interact with HubGs-mediated receptors. This analysis resulted in the identification of top-ranked ten drug agents, including Nilotinib, Tegobuvir, Digoxin, Proscillaridin, Olysio, Simeprevir, Hesperidin, Oleanolic Acid, Naltrindole and Danoprevir. Finally, we investigated the binding stability of the top-ranked three drug molecules Nilotinib, Tegobuvir and Proscillaridin with the three top-ranked proposed receptors (AURKA, AURKB, OAS1) by using 100 ns MD-based MM-PBSA simulations and observed their stable performance. Therefore, the findings of this study might be useful resources for diagnosis and therapies of SARS-CoV-2 infections.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune responses and infection outcomes were evaluated in 2,686 patients with varying immune-suppressive disease states after administration of two Coronavirus Disease 2019 (COVID-19) vaccines. Overall, 255 of 2,204 (12%) patients failed to develop anti-spike antibodies, with an additional 600 of 2,204 (27%) patients generating low levels (<380 AU ml-1). Vaccine failure rates were highest in ANCA-associated vasculitis on rituximab (21/29, 72%), hemodialysis on immunosuppressive therapy (6/30, 20%) and solid organ transplant recipients (20/81, 25% and 141/458, 31%). SARS-CoV-2-specific T cell responses were detected in 513 of 580 (88%) patients, with lower T cell magnitude or proportion in hemodialysis, allogeneic hematopoietic stem cell transplantation and liver transplant recipients (versus healthy controls). Humoral responses against Omicron (BA.1) were reduced, although cross-reactive T cell responses were sustained in all participants for whom these data were available. BNT162b2 was associated with higher antibody but lower cellular responses compared to ChAdOx1 nCoV-19 vaccination. We report 474 SARS-CoV-2 infection episodes, including 48 individuals with hospitalization or death from COVID-19. Decreased magnitude of both the serological and the T cell response was associated with severe COVID-19. Overall, we identified clinical phenotypes that may benefit from targeted COVID-19 therapeutic strategies.
Project description:The sudden emergence of severe respiratory disease, caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has recently become a public health emergency. Genome sequence analysis of SARS-CoV-2 revealed its close resemblance to the earlier reported SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). However, initial testing of the drugs used against SARS-CoV and MERS-CoV has been ineffective in controlling SARS-CoV-2. The present study highlights the genomic, proteomic, pathogenesis, and therapeutic strategies in SARS-CoV-2 infection. We have carried out sequence analysis of potential drug target proteins in SARS-CoV-2 and, compared them with SARS-CoV and MERS viruses. Analysis of mutations in the coding and non-coding regions, genetic diversity, and pathogenicity of SARS-CoV-2 has also been done. A detailed structural analysis of drug target proteins has been performed to gain insights into the mechanism of pathogenesis, structure-function relationships, and the development of structure-guided therapeutic approaches. The cytokine profiling and inflammatory signalling are different in the case of SARS-CoV-2 infection. We also highlighted possible therapies and their mechanism of action followed by clinical manifestation. Our analysis suggests a minimal variation in the genome sequence of SARS-CoV-2, may be responsible for a drastic change in the structures of target proteins, which makes available drugs ineffective.