Ontology highlight
ABSTRACT: Background
Chinese medicine Toujie Quwen granule (TJQW) has proven to be effective in the treatment of mild coronavirus disease 2019 (COVID-19) cases by relieving symptoms, slowing the progression of the disease, and boosting the recovery of patients. But the bioactive compounds and potential mechanisms of TJQW for COVID-19 prevention and treatment are unclear. This study aimed to explore the potential therapeutic mechanism of TJQW in coronavirus disease 2019 (COVID-19) based on an integrated network pharmacology approach.Methods
TCMSP were used to search and screen the active ingredients in TJQW. The Swiss TargetPrediction was used to predict the potential targets of active ingredients. Genes co-expressed with ACE2 were considered potential therapeutic targets on COVID-19. Venn diagram was created to show correlative targets of TJQW against COVID-19. Cytoscape was used to construct a "drug-active ingredient-potential target" network, STRING were used to construct protein-protein interaction network, and cytoHubba performed network topology analysis. Enrichment of biological functions and signaling pathways of core targets was performed by using the clusterProfiler package in R software and ClueGO with CluePedia plugins in Cytoscape.Results
A total of 156 active ingredients were obtained through oral bioavailability and drug-likeness screenings. Two hundred twenty-seven potential targets of TJQW were related to COVID-19. The top ten core targets are EGFR, CASP3, STAT3, ESR1, FPR2, F2, BCL2L1, BDKRB2, MPO, and ACE. Based on that, we obtained 19 key active ingredients: umbelliprenin, quercetin, kaempferol, luteolin, praeruptorin E, stigmasterol, and oroxylin A. And the enrichment analysis obtained multiple related gene ontology functions and signaling pathways. Lastly, we constructed a key network of "drug-component-target-biological process-signaling pathway". Our findings suggested that TJQW treatment for COVID-19 was associated with elevation of immunity and suppression of inflammatory stress, including regulation of inflammatory response, viral process, neutrophil mediated immunity, PI3K-Akt signaling pathway, MAPK signaling pathway, Jak-STAT signaling pathway, Complement and coagulation cascades, and HIF-1 signaling pathway.Conclusions
Our study uncovered the pharmacological mechanism underlying TJQW treatment for COVID-19. These results should benefit efforts for people around the world to gain more knowledge about Chinese medicine TJQW in the treatment of this vicious epidemic COVID-19, and help to address this pressing problem currently facing the world.
SUBMITTER: Huang Y
PROVIDER: S-EPMC7512049 | biostudies-literature |
REPOSITORIES: biostudies-literature