Unknown

Dataset Information

0

Information Theoretic-Based Interpretation of a Deep Neural Network Approach in Diagnosing Psychogenic Non-Epileptic Seizures.


ABSTRACT: The use of a deep neural network scheme is proposed to help clinicians solve a difficult diagnosis problem in neurology. The proposed multilayer architecture includes a feature engineering step (from time-frequency transformation), a double compressing stage trained by unsupervised learning, and a classification stage trained by supervised learning. After fine-tuning, the deep network is able to discriminate well the class of patients from controls with around 90% sensitivity and specificity. This deep model gives better classification performance than some other standard discriminative learning algorithms. As in clinical problems there is a need for explaining decisions, an effort has been carried out to qualitatively justify the classification results. The main novelty of this paper is indeed to give an entropic interpretation of how the deep scheme works and reach the final decision.

SUBMITTER: Gasparini S 

PROVIDER: S-EPMC7512641 | biostudies-literature | 2018 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Information Theoretic-Based Interpretation of a Deep Neural Network Approach in Diagnosing Psychogenic Non-Epileptic Seizures.

Gasparini Sara S   Campolo Maurizio M   Ieracitano Cosimo C   Mammone Nadia N   Ferlazzo Edoardo E   Sueri Chiara C   Tripodi Giovanbattista Gaspare GG   Aguglia Umberto U   Morabito Francesco Carlo FC  

Entropy (Basel, Switzerland) 20180123 2


The use of a deep neural network scheme is proposed to help clinicians solve a difficult diagnosis problem in neurology. The proposed multilayer architecture includes a feature engineering step (from time-frequency transformation), a double compressing stage trained by unsupervised learning, and a classification stage trained by supervised learning. After fine-tuning, the deep network is able to discriminate well the class of patients from controls with around 90% sensitivity and specificity. Th  ...[more]

Similar Datasets

| S-EPMC9988551 | biostudies-literature
| S-EPMC7448150 | biostudies-literature
| S-EPMC5423814 | biostudies-literature
| S-EPMC3661726 | biostudies-literature
| S-EPMC6398111 | biostudies-literature
| S-EPMC2844915 | biostudies-other
| S-EPMC10899437 | biostudies-literature
| S-EPMC6546070 | biostudies-literature
| S-EPMC8606439 | biostudies-literature
| S-EPMC4480007 | biostudies-other