Unknown

Dataset Information

0

Methionine Adenosyltransferase Engineering to Enable Bioorthogonal Platforms for AdoMet-Utilizing Enzymes.


ABSTRACT: The structural conservation among methyltransferases (MTs) and MT functional redundancy is a major challenge to the cellular study of individual MTs. As a first step toward the development of an alternative biorthogonal platform for MTs and other AdoMet-utilizing enzymes, we describe the evaluation of 38 human methionine adenosyltransferase II-? (hMAT2A) mutants in combination with 14 non-native methionine analogues to identify suitable bioorthogonal mutant/analogue pairings. Enabled by the development and implementation of a hMAT2A high-throughput (HT) assay, this study revealed hMAT2A K289L to afford a 160-fold inversion of the hMAT2A selectivity index for a non-native methionine analogue over the native substrate l-Met. Structure elucidation of K289L revealed the mutant to be folded normally with minor observed repacking within the modified substrate pocket. This study highlights the first example of exchanging l-Met terminal carboxylate/amine recognition elements within the hMAT2A active-site to enable non-native bioorthgonal substrate utilization. Additionally, several hMAT2A mutants and l-Met substrate analogues produced AdoMet analogue products with increased stability. As many AdoMet-producing (e.g., hMAT2A) and AdoMet-utlizing (e.g., MTs) enzymes adopt similar active-site strategies for substrate recognition, the proof of concept first generation hMAT2A engineering highlighted herein is expected to translate to a range of AdoMet-utilizing target enzymes.

SUBMITTER: Huber TD 

PROVIDER: S-EPMC7516136 | biostudies-literature | 2020 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Methionine Adenosyltransferase Engineering to Enable Bioorthogonal Platforms for AdoMet-Utilizing Enzymes.

Huber Tyler D TD   Clinger Jonathan A JA   Liu Yang Y   Xu Weijun W   Miller Mitchell D MD   Phillips George N GN   Thorson Jon S JS  

ACS chemical biology 20200303 3


The structural conservation among methyltransferases (MTs) and MT functional redundancy is a major challenge to the cellular study of individual MTs. As a first step toward the development of an alternative biorthogonal platform for MTs and other AdoMet-utilizing enzymes, we describe the evaluation of 38 human methionine adenosyltransferase II-α (hMAT2A) mutants in combination with 14 non-native methionine analogues to identify suitable bioorthogonal mutant/analogue pairings. Enabled by the deve  ...[more]

Similar Datasets

| S-EPMC4776477 | biostudies-literature
| S-EPMC8727953 | biostudies-literature
| S-EPMC8315116 | biostudies-literature
| S-EPMC9323693 | biostudies-literature
| S-EPMC3533284 | biostudies-literature
| S-EPMC165446 | biostudies-literature
| S-EPMC3853416 | biostudies-literature
| S-EPMC5798556 | biostudies-literature
| S-EPMC4924687 | biostudies-literature
| S-EPMC5779715 | biostudies-literature