Unknown

Dataset Information

0

An integrated system of air sampling and simultaneous enrichment for rapid biosensing of airborne coronavirus and influenza virus.


ABSTRACT: Point-of-care risk assessment (PCRA) for airborne viruses requires a system that can enrich low-concentration airborne viruses dispersed in field environments into a small volume of liquid. In this study, airborne virus particles were collected to a degree above the limit of detection (LOD) for a real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). This study employed an electrostatic air sampler to capture aerosolized test viruses (human coronavirus 229E (HCoV-229E), influenza A virus subtype H1N1 (A/H1N1), and influenza A virus subtype H3N2 (A/H3N2)) in a continuously flowing liquid (aerosol-to-hydrosol (ATH) enrichment) and a concanavalin A (ConA)-coated magnetic particles (CMPs)-installed fluidic channel for simultaneous hydrosol-to-hydrosol (HTH) enrichment. The air sampler's ATH enrichment capacity (EC) was evaluated using the aerosol counting method. In contrast, the HTH EC for the ATH-collected sample was evaluated using transmission-electron-microscopy (TEM)-based image analysis and real-time qRT-PCR assay. For example, the ATH EC for HCoV-229E was up to 67,000, resulting in a viral concentration of 0.08 PFU/mL (in a liquid sample) for a viral epidemic scenario of 1.2 PFU/m3 (in air). The real-time qRT-PCR assay result for this liquid sample was "non-detectable" however, subsequent HTH enrichment for 10 min caused the "non-detectable" sample to become "detectable" (cycle threshold (CT) value of 33.8 ± 0.06).

SUBMITTER: Kim HR 

PROVIDER: S-EPMC7518959 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

An integrated system of air sampling and simultaneous enrichment for rapid biosensing of airborne coronavirus and influenza virus.

Kim Hyeong Rae HR   An Sanggwon S   Hwang Jungho J  

Biosensors & bioelectronics 20200926


Point-of-care risk assessment (PCRA) for airborne viruses requires a system that can enrich low-concentration airborne viruses dispersed in field environments into a small volume of liquid. In this study, airborne virus particles were collected to a degree above the limit of detection (LOD) for a real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). This study employed an electrostatic air sampler to capture aerosolized test viruses (human coronavirus 229E (HCoV-229E)  ...[more]

Similar Datasets

| S-EPMC7825829 | biostudies-literature
| S-EPMC92894 | biostudies-literature
| S-EPMC4477231 | biostudies-literature
| S-EPMC5369763 | biostudies-literature
| S-EPMC5805565 | biostudies-literature
| S-EPMC8239551 | biostudies-literature
| S-EPMC8571105 | biostudies-literature
| S-EPMC3360726 | biostudies-other
| S-EPMC8653264 | biostudies-literature
| S-EPMC8274922 | biostudies-literature