Unknown

Dataset Information

0

Properties of protein unfolded states suggest broad selection for expanded conformational ensembles.


ABSTRACT: Much attention is being paid to conformational biases in the ensembles of intrinsically disordered proteins. However, it is currently unknown whether or how conformational biases within the disordered ensembles of foldable proteins affect function in vivo. Recently, we demonstrated that water can be a good solvent for unfolded polypeptide chains, even those with a hydrophobic and charged sequence composition typical of folded proteins. These results run counter to the generally accepted model that protein folding begins with hydrophobicity-driven chain collapse. Here we investigate what other features, beyond amino acid composition, govern chain collapse. We found that local clustering of hydrophobic and/or charged residues leads to significant collapse of the unfolded ensemble of pertactin, a secreted autotransporter virulence protein from Bordetella pertussis, as measured by small angle X-ray scattering (SAXS). Sequence patterns that lead to collapse also correlate with increased intermolecular polypeptide chain association and aggregation. Crucially, sequence patterns that support an expanded conformational ensemble enhance pertactin secretion to the bacterial cell surface. Similar sequence pattern features are enriched across the large and diverse family of autotransporter virulence proteins, suggesting sequence patterns that favor an expanded conformational ensemble are under selection for efficient autotransporter protein secretion, a necessary prerequisite for virulence. More broadly, we found that sequence patterns that lead to more expanded conformational ensembles are enriched across water-soluble proteins in general, suggesting protein sequences are under selection to regulate collapse and minimize protein aggregation, in addition to their roles in stabilizing folded protein structures.

SUBMITTER: Bowman MA 

PROVIDER: S-EPMC7519328 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Properties of protein unfolded states suggest broad selection for expanded conformational ensembles.

Bowman Micayla A MA   Riback Joshua A JA   Rodriguez Anabel A   Guo Hongyu H   Li Jun J   Sosnick Tobin R TR   Clark Patricia L PL  

Proceedings of the National Academy of Sciences of the United States of America 20200902 38


Much attention is being paid to conformational biases in the ensembles of intrinsically disordered proteins. However, it is currently unknown whether or how conformational biases within the disordered ensembles of foldable proteins affect function in vivo. Recently, we demonstrated that water can be a good solvent for unfolded polypeptide chains, even those with a hydrophobic and charged sequence composition typical of folded proteins. These results run counter to the generally accepted model th  ...[more]

Similar Datasets

| S-EPMC3164158 | biostudies-literature
| S-EPMC1929054 | biostudies-literature
| S-EPMC3827836 | biostudies-literature
| S-EPMC9436118 | biostudies-literature
| S-EPMC9922302 | biostudies-literature
| S-EPMC2749775 | biostudies-literature
| S-EPMC4394632 | biostudies-literature
| S-EPMC3314952 | biostudies-literature
| S-EPMC2633443 | biostudies-literature
| S-EPMC1440751 | biostudies-literature