A phase 1, dose-escalation study of PF-06664178, an anti-Trop-2/Aur0101 antibody-drug conjugate in patients with advanced or metastatic solid tumors.
Ontology highlight
ABSTRACT: Purpose and Methods Trop-2 is a glycoprotein over-expressed in many solid tumors but at low levels in normal human tissue, providing a potential therapeutic target. We conducted a phase 1 dose-finding study of PF-06664178, an antibody-drug conjugate that targets Trop-2 for the selective delivery of the cytotoxic payload Aur0101. The primary objective was to determine the maximum tolerated dose and recommended phase 2 dose. Secondary objectives included further characterization of the safety profile, pharmacokinetics and antitumor activity. Eligible patients were enrolled and received multiple escalating doses of PF-06664178 in an open-label and unblinded manner based on a modified continual reassessment method. Results Thirty-one patients with advanced or metastatic solid tumors were treated with escalating doses of PF-06664178 given intravenously every 21 days. Doses explored ranged from 0.15 mg/kg to 4.8 mg/kg. Seven patients experienced at least one dose limiting toxicity (DLT), either neutropenia or rash. Doses of 3.60 mg/kg, 4.2 mg/kg and 4.8 mg/kg were considered intolerable due to DLTs in skin rash, mucosa and neutropenia. Best overall response was stable disease in 11 patients (37.9%). None of the patients had a partial or complete response. Systemic exposure of PF-06664178 increased in a dose-related manner. Serum concentrations of free Aur0101 were substantially lower than those of PF-06664178 and total antibody. No correlation of Trop-2 expression and objective response was observed, although Trop-2 overexpression was not required for study entry. The intermediate dose of 2.4 mg/kg appeared to be the highest tolerated dose, but this was not fully explored as the study was terminated early due to excess toxicity. Conclusion PF-06664178 showed toxicity at high dose levels with modest antitumor activity. Neutropenia, skin rash and mucosal inflammation were dose limiting toxicities. Findings from this study may potentially aid in future antibody drug conjugate design and trials.
SUBMITTER: King GT
PROVIDER: S-EPMC7519583 | biostudies-literature | 2018 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA