Project description:BackgroundPrevious studies have found an increase in cardiac troponins (cTns) and echocardiographic abnormalities in patients with COVID-19 and reported their association with poor clinical outcomes. Whether acute injury occurs during the course of critical care and if it is associated with cardiac function is unknown. The purpose of this study was to document the incidence of acute myocardial injury (AMInj) and echocardiographically defined left ventricular (LV) and right ventricular (RV) systolic dysfunction in consecutive patients admitted to an intensive care unit (ICU) for COVID-19. The relationship between AMInj and echocardiographic abnormalities during the first 14 days of ICU admission was studied. Finally, the association between echocardiographic findings, AMInj and clinical outcome was evaluated.MethodsSeventy-four consecutive patients (≥18 years) admitted to the ICU at Linköping University Hospital between 19 Mar 2020 and 31 Dec 2020 for COVID-19 were included. High-sensitivity troponin-T (hsTnT) was measured daily for up to 14 days. Transthoracic echocardiography was conducted within 72 h of ICU admission. Acute myocardial injury was defined as an increased hsTnT > 14ng/l and a > 20% absolute change with or without ischaemic symptoms. LV and RV systolic dysfunction was defined as at least 2 abnormal indicators of systolic function specified by consensus guidelines.ResultsIncreased hsTnT was observed in 59% of patients at ICU admission, and 82% developed AMInj with peak levels at 8 (3-13) days after ICU admission. AMInj was not statistically significantly associated with 30-day mortality but was associated with an increased duration of invasive mechanical ventilation (10 (3-13) vs. 5 days (0-9), p=0.001) as well as ICU length of stay (LOS) (19.5 (11-28) vs. 7 days (5-13), p=0.015). After adjustment for SAPS-3 and admission SOFA score, the effect of AMInj was significant only for the duration of mechanical ventilation (p=0.030). The incidence of LV and RV dysfunction was 28% and 22%, respectively. Only indices of LV and RV longitudinal contractility (mitral and tricuspid annular plane systolic excursion) were associated with AMInj. Echocardiographic parameters were not associated with clinical outcome.ConclusionsMyocardial injury is common in critically ill patients with COVID-19, with AMInj developing in more than 80% after ICU admission. In contrast, LV and RV dysfunction occurred in approximately one-quarter of patients. AMInj was associated with an increased need for mechanical ventilation and ICU LOS but neither AMInj nor ventricular dysfunction was significantly associated with mortality.
Project description:ObjectiveTo investigate the relationship between central venous pressure (CVP) and acute right ventricular (RV) dysfunction in critically ill patients on mechanical ventilation.MethodsThis retrospective study enrolled mechanically ventilated critically ill who underwent transthoracic echocardiographic examination and CVP monitoring. Echocardiographic indices including tricuspid annular plane systolic excursion (TAPSE), fractional area change (FAC), and tricuspid lateral annular systolic velocity wave (S') were collected to assess RV function. Patients were then classified into three groups based on their RV function and presence of systemic venous congestion as assessed by inferior vena cava diameter (IVCD) and hepatic vein (HV) Doppler: normal RV function (TAPSE ≥ 17 mm, FAC ≥ 35% and S' ≥9.5 cm/sec), isolated RV dysfunction (TAPSE < 17 mm or FAC < 35% or S' <9.5 cm/sec with IVCD ≤ 20 mm or HV S ≥ D), and RV dysfunction with congestion (TAPSE < 17 mm or FAC < 35% or S' <9.5 cm/sec with IVCD > 20 mm and HV S < D).ResultsA total of 518 patients were enrolled in the study, of whom 301 were categorized in normal RV function group, 164 in isolated RV dysfunction group and 53 in RV dysfunction with congestion group. Receiver operating characteristic analysis revealed a good discriminative ability of CVP for identifying patients with RV dysfunction and congestion(AUC 0.839; 95% CI: 0.795-0.883; p < 0.001). The optimal CVP cutoff was 10 mm Hg, with sensitivity of 79.2%, specificity of 69.4%, negative predictive value of 96.7%, and positive predictive value of 22.8%. A large gray zone existed between 9 mm Hg and 12 mm Hg, encompassing 95 patients (18.3%). For identifying all patients with RV dysfunction, CVP demonstrated a lower discriminative ability (AUC 0.616; 95% CI: 0.567-0.665; p < 0.001). Additionally, the gray zone was even larger, ranging from 5 mm Hg to 12 mm Hg, and included 349 patients (67.4%).ConclusionsCVP may be a helpful indicator of acute RV dysfunction patients with systemic venous congestion in mechanically ventilated critically ill, but its accuracy is limited. A CVP less than10 mm Hg can almost rule out RV dysfunction with congestion. In contrast, CVP should not be used to identify general RV dysfunction.
Project description:The pneumonitis associated with coronavirus disease 2019 (COVID-19) infection impacts the right ventricle (RV). However, the association between the disease severity and right ventricular systolic function needs elucidation. We conducted a retrospective study of 108 patients admitted to critical care with COVID-19 pneumonitis to examine the association between tricuspid annular plane systolic excursion (TAPSE) by transthoracic echocardiography as a surrogate for RV systolic function with PaO2/FiO2 ratio as a marker of disease severity and other respiratory parameters. The median age was 59 years [51, 66], 33 (31%) were female, and 63 (58%) were mechanically ventilated. Echocardiography was performed at a median of 3 days [2, 12] following admission to critical care. The PaO2/FiO2 and TAPSE medians were 20.5 [14.4, 32.0] and 21 mm [18, 24]. There was a statistically significant, albeit weak, association between the increase in TAPSE and the worsening of the PaO2/FiO2 ratio (r2 = 0.041, p = 0.04). This association was more pronounced in the mechanically ventilated (r2 = 0.09, p = 0.02). TAPSE did not correlate significantly with FiO2, PaO2, PaCO2, pH, respiratory rate, or mechanical ventilation. Patients with a TAPSE ≥ 17 mm had a considerably worse PaO2/FiO2 ratio than a TAPSE < 17 mm (18.6 vs. 32.1, p = 0.005). The PaO2/FiO2 ratio predicted TAPSE (OR = 0.94, p = 0.004) with good area under the curve (0.72, p = 0.006). Moreover, a PaO2/FiO2 ratio < 26.7 (moderate pneumonitis) predicted TAPSE > 17 mm with reasonable sensitivity (67%) and specificity (68%). In patients admitted to critical care with COVID-19 pneumonitis, TAPSE increased as the disease severity worsened early in the course of the disease, especially in the mechanically ventilated. A TAPSE within the normal range is not necessarily reassuring in early COVID-19 pneumonitis.
Project description:BackgroundDuring the novel coronavirus disease 2019 (COVID-19) pandemic, rapid diagnostics have been frequently sought to quickly evaluate a patient's condition. Lung ultrasound can provide an early glimpse into the disease process and its severity. The addition of focused echocardiography can be particularly helpful in the haemodynamically compromised patient to detect myocardial involvement and alternative diagnoses.CaseWe discuss here a 53-year-old patient who presented to the Emergency Department with hypoxia and hypotension. Bedside focused ultrasound revealed signs of COVID-19 pneumonia with evidence of right ventricular strain, initially thought to be due to massive pulmonary embolism. A computed tomography scan confirmed the findings on ultrasonography, but surprisingly did not demonstrate a pulmonary embolism.ConclusionPoint-of-care ultrasound in COVID-19 aided the diagnosis of affected organs and helped categorise the type of shock in this patient; however, right ventricular dysfunction should be interpreted with caution and may not be due to a pulmonary embolism, as in this case.
Project description:Infections caused by SARS-CoV-2 may cause a severe disease, termed COVID-19, with significant mortality. Host responses to this infection, mainly in terms of systemic inflammation, have emerged as key pathogenetic mechanisms, and their modulation is the only therapeutic strategy that has shown a mortality benefit. Herein, we used peripheral blood transcriptomes of critically-ill COVID-19 patients obtained at admission in an Intensive Care Unit, to identify two clusters that, in spite of no major clinical differences, have different gene expression profiles that reveal different underlying pathogenetic mechanisms and ultimately have different ICU outcome. A transcriptomic signature was used to identify these clusters in an external validation cohort, yielding a similar result. These results illustrate the potential of transcriptomic profiles to identify patient endotypes and point to relevant pathogenetic mechanisms in COVID-19.
Project description:ObjectiveTo compare two-dimensional-speckle tracking echocardiographic parameters (2D-STE) and classic echocardiographic parameters of right ventricular (RV) systolic function in patients with coronavirus disease 2019 (COVID-19)-related acute respiratory distress syndrome (CARDS) complicated or not by acute cor pulmonale (ACP).DesignProspective, between March 1, 2020 and April 15, 2020.SettingIntensive care unit of Amiens University Hospital (France).ParticipantsAdult patients with moderate-to-severe CARDS under mechanical ventilation for fewer than 24 hours.InterventionsNone.Measurements and main resultsTricuspid annular displacement (TAD) parameters (TAD-septal, TAD-lateral, and RV longitudinal shortening fraction [RV-LSF]), RV global longitudinal strain (RV-GLS), and RV free wall longitudinal strain (RVFWLS) were measured using transesophageal echocardiography with a dedicated software and compared with classic RV systolic parameters (RV-FAC, S' wave, and tricuspid annular plane systolic excursion [TAPSE]). RV systolic dysfunction was defined as RV-FAC <35%. Twenty-nine consecutive patients with moderate-to-severe CARDS were included. ACP was diagnosed in 12 patients (41%). 2D-STE parameters were markedly altered in the ACP group, and no significant difference was found between patients with and without ACP for classic RV parameters (RV-FAC, S' wave, and TAPSE). In the ACP group, RV-LSF (17% [14%-22%]) had the best correlation with RV-FAC (r = 0.79, p < 0.001 v r = 0.27, p = 0.39 for RVGLS and r = 0.28, p = 0.39 for RVFWLS). A RV-LSF cut-off value of 17% had a sensitivity of 80% and a specificity of 86% to identify RV systolic dysfunction.ConclusionsClassic RV function parameters were not altered by ACP in patients with CARDS, contrary to 2D-STE parameters. RV-LSF seems to be a valuable parameter to detect early RV systolic dysfunction in CARDS patients with ACP.
Project description:PurposePatients with COVID-19 admitted to intensive care unit (ICU) may have right ventricular (RV) injury. The main goal of this study was to investigate the incidence of RV injury and to describe the patient trajectories in terms of RV injury during ICU stay.MethodsProspective and bicentric study with standardized transthoracic echocardiographic (TTE) follow-up during ICU stay with a maximum follow-up of 28 days. The different patterns of RV injury were isolated RV dilation, RV dysfunction (tricuspid annular plane systolic excursion < 17 mm and/or systolic tricuspid annular velocity < 9.5 cm/s and/or RV fractional area change < 35%) without RV dilation, RV dysfunction with RV dilation and acute cor pulmonale (ACP, RV dilatation with paradoxical septal motion). The different RV injury patterns were described and their association with Day-28 mortality was investigated.ResultsOf 118 patients with complete echocardiographic follow-up who underwent 393 TTE examinations during ICU stay, 73(62%) had at least one RV injury pattern during one or several TTE examinations: 29(40%) had isolated RV dilation, 39(53%) had RV dysfunction without RV dilation, 10(14%) had RV dysfunction with RV dilation and 2(3%) had ACP. Patients with RV injury were more likely to have cardiovascular risk factors, to be intubated and to receive norepinephrine and had a higher Day-28 mortality rate (27 vs. 7%, p < 0.01). RV injury was isolated in 82% of cases, combined with left ventricular systolic dysfunction in 18% of cases and 10% of patients with RV injury experienced several patterns of RV injury during ICU stay. The number of patients with de novo RV injury decreased over time, no patient developed de novo RV injury after Day-14 regardless of the RV injury pattern and 20(31%) patients without RV injury on ICU admission developed RV injury during ICU stay. Only the combination of RV dysfunction with RV dilation or ACP (aHR = 3.18 95% CI(1.16-8.74), p = 0.03) was associated with Day-28 mortality.ConclusionRV injury was frequent in COVID-19 patients, occurred within the first two weeks after ICU admission and was most often isolated. Only the combination of RV dysfunction with RV dilation or ACP could potentially be associated with Day-28 mortality. Clinical trial registration NCT04335162.
Project description:ObjectivesTo report the use of common femoral vein Doppler interrogation as a simple technique to diagnose right ventricular dysfunction.DesignCase report.SettingCardiac surgical ICU.PatientsPostoperative cardiac surgical patients.InterventionsCommon femoral pulsed-wave and color Doppler examination associated with hepatic, portal, and renal venous Doppler measurement were obtained in both patients and before and after treatment in patient number 1. In addition, right ventricular pressure waveform examination was obtained in patient number 2.Measurements and main resultsThe technique to obtain common femoral venous Doppler is described. Two cases of patients presenting with right ventricular dysfunction and fluid overload with portal and renal venous congestion in the perioperative period undergoing complex multivalvular cardiac surgery are presented. Hemodynamic waveform monitoring was performed alongside echocardiographic, hepatic, and renal venous flow Doppler assessment, and spectral Doppler profiles of the common femoral veins were examined. Those findings were useful in confirming our diagnosis and guiding our response to treatment. An algorithm was developed and tested on two additional hemodynamically unstable patients.ConclusionsDoppler examination of the common femoral vein is a simple, fast, and noninvasive technique that could be useful to rule in the presence of right ventricular dysfunction with venous congestion and help guide the management of such patients.