Ontology highlight
ABSTRACT: Statement of significance
As the host receptor of SARS-CoV-2, ACE2 has been the subject of extensive structural and antibody design efforts in aims to curtail COVID-19 spread. Here, we perform molecular dynamics simulations of the homodimer ACE2 full-length structure to study the dynamics of this protein in the context of the cellular membrane. The simulations evidence exceptional plasticity in the protein structure due to flexible hinge motions in the head-transmembrane domain linker region and helix mobility in the membrane, resulting in a varied ensemble of conformations distinct from the experimental structures. Our findings suggest a dynamical contribution of ACE2 to the spike glycoprotein shedding required for infection, and contribute to the question of stoichiometry of the Spike-ACE2 complex.
SUBMITTER: Barros EP
PROVIDER: S-EPMC7523095 | biostudies-literature | 2020 Sep
REPOSITORIES: biostudies-literature
bioRxiv : the preprint server for biology 20200916
The COVID-19 pandemic has swept over the world in the past months, causing significant loss of life and consequences to human health. Although numerous drug and vaccine developments efforts are underway, many questions remain outstanding on the mechanism of SARS-CoV-2 viral association to angiotensin-converting enzyme 2 (ACE2), its main host receptor, and entry in the cell. Structural and biophysical studies indicate some degree of flexibility in the viral extracellular Spike glycoprotein and at ...[more]