Occupational noise-induced hearing loss in China: a systematic review and meta-analysis.
Ontology highlight
ABSTRACT: OBJECTIVE:Most of the Chinese occupational population are becoming at risk of noise-induced hearing loss (NIHL). However, there is a limited number of literature reviews on occupational NIHL in China. This study aimed to analyse the prevalence and characteristics of occupational NIHL in the Chinese population using data from relevant studies. DESIGN:Systematic review and meta-analysis. METHODS:From December 2019 to February 2020, we searched the literature through databases, including Web of Science, PubMed, MEDLINE, Scopus, the China National Knowledge Internet, Chinese Sci-Tech Journal Database (weip.com), WanFang Database and China United Library Database, for studies on NIHL in China published in 1993-2019 and analysed the correlation between NIHL and occupational exposure to noise, including exposure to complex noise and coexposure to noise and chemicals. RESULTS:A total of 71 865 workers aged 33.5±8.7 years were occupationally exposed to 98.6±7.2 dB(A) (A-weighted decibels) noise for a duration of 9.9±8.4 years in the transportation, mining and typical manufacturing industries. The prevalence of occupational NIHL in China was 21.3%, of which 30.2% was related to high-frequency NIHL (HFNIHL), 9.0% to speech-frequency NIHL and 5.8% to noise-induced deafness. Among manufacturing workers, complex noise contributed to greater HFNIHL than Gaussian noise (overall weighted OR (OR)=1.95). Coexposure to noise and chemicals such as organic solvents, welding fumes, carbon monoxide and hydrogen sulfide led to greater HFNIHL than noise exposure alone (overall weighted OR=2.36). Male workers were more likely to experience HFNIHL than female workers (overall weighted OR=2.26). Age, noise level and exposure duration were also risk factors for HFNIHL (overall weighted OR=1.35, 5.63 and 1.75, respectively). CONCLUSIONS:The high prevalence of occupational NIHL in China was related to the wide distribution of noise in different industries as well as high-level and long-term noise exposure. The prevalence was further aggravated by exposure to complex noise or coexposure to noise and specific chemicals. Additional efforts are needed to reduce occupational noise exposure in China.
SUBMITTER: Zhou J
PROVIDER: S-EPMC7523212 | biostudies-literature | 2020 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA