Unknown

Dataset Information

0

Antiretroviral therapy does not reduce tuberculosis reactivation in a tuberculosis-HIV coinfection model.


ABSTRACT: While the advent of combination antiretroviral therapy (ART) has significantly improved survival, tuberculosis (TB) remains the leading cause of death in the HIV-infected population. We used Mycobacterium tuberculosis/simian immunodeficiency virus-coinfected (M. tuberculosis/SIV-coinfected) macaques to model M. tuberculosis/HIV coinfection and study the impact of ART on TB reactivation due to HIV infection. Although ART significantly reduced viral loads and increased CD4+ T cell counts in blood and bronchoalveolar lavage (BAL) samples, it did not reduce the relative risk of SIV-induced TB reactivation in ART-treated macaques in the early phase of treatment. CD4+ T cells were poorly restored specifically in the lung interstitium, despite their significant restoration in the alveolar compartment of the lung as well as in the periphery. IDO1 induction in myeloid cells in the inducible bronchus-associated lymphoid tissue (iBALT) likely contributed to dysregulated T cell homing and impaired lung immunity. Thus, although ART was indispensable for controlling viral replication, restoring CD4+ T cells, and preventing opportunistic infection, it appeared inadequate in reversing the clinical signs of TB reactivation during the relatively short duration of ART administered in this study. This finding warrants the modeling of concurrent treatment of TB and HIV to potentially reduce the risk of reactivation of TB due to HIV to inform treatment strategies in patients with M. tuberculosis/HIV coinfection.

SUBMITTER: Ganatra SR 

PROVIDER: S-EPMC7524506 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications


While the advent of combination antiretroviral therapy (ART) has significantly improved survival, tuberculosis (TB) remains the leading cause of death in the HIV-infected population. We used Mycobacterium tuberculosis/simian immunodeficiency virus-coinfected (M. tuberculosis/SIV-coinfected) macaques to model M. tuberculosis/HIV coinfection and study the impact of ART on TB reactivation due to HIV infection. Although ART significantly reduced viral loads and increased CD4+ T cell counts in blood  ...[more]

Similar Datasets

| S-EPMC8803324 | biostudies-literature
2016-07-15 | E-GEOD-71064 | biostudies-arrayexpress
| S-EPMC8294654 | biostudies-literature
2013-04-01 | E-MEXP-3618 | biostudies-arrayexpress
2016-07-15 | GSE71064 | GEO
| S-EPMC3327101 | biostudies-literature
| S-EPMC3528009 | biostudies-other
| S-EPMC4214386 | biostudies-other
| S-EPMC6203657 | biostudies-literature
| S-EPMC6294718 | biostudies-literature