Project description:RationaleAnti-IgLON5 disease is a complex neurological illness which is characterized by progressive sleep and movement disorders and defined by specific autoantibodies to IgLON5. We here describe the first case of a patient with coexisting anti-IgLON5 as well as anti-?-aminobutyric acid B (GABAB)-receptor antibodies and predominant clinical features of anti-IgLON5 disease.Patient concernsThe patient initially presented with subacute symptoms of severe sleep disorder, gait stability, dysarthria, cognitive impairment, depressive episode and hallucinations.DiagnosesThe patient was diagnosed with autoimmune encephalitis, based on clinical features and positive anti-IgLON5 antibodies in serum as well as in cerebrospinal fluid and anti-GABAB-receptor antibodies in serum only.InterventionsInitially, the patient was treated with high dosages of methylprednisolone and subsequently with plasmapheresis. Due to the lack of clinical improvement immunosuppressive treatment with intravenous cyclophosphamide was initiated.OutcomesFollowing the first year of cyclophosphamide treatment, neurological examination revealed an improvement in gait instability, visual and acoustic hallucinations and sleep disorder.LessonsThe case report demonstrates that anti-IgLON5 and anti-GABAB-receptor antibodies can coexist in the same patient whereas clinical leading symptoms are determined by those antibodies that were tested positive in cerebrospinal fluid.
Project description:ObjectivesTo determine the characteristics of adult-onset autoimmune chorea, and compare paraneoplastic and idiopathic subgroups.MethodsThirty-six adults with autoimmune chorea were identified at Mayo Clinic (Rochester, MN) from 1997 to 2012. Medical record and laboratory data were recorded. Nonparaneoplastic (n = 22) and paraneoplastic cases (n = 14) were compared.ResultsWomen accounted for 21 patients (58%). Median age at symptom onset was 67 years (range 18-87 years). We estimated the incidence for Olmsted County was 1.5 per million person-years. Symptom onset was subacute in all. Chorea was focal (20 patients) or generalized (16 patients). Although chorea predominated, other neurologic disorders frequently coexisted (29 patients); abnormal eye movements were uncommon (4 patients). No patient had NMDA receptor antibody or any immunoglobulin (Ig)G yielding a detectable immunofluorescence binding pattern restricted to basal ganglia. Two had synaptic IgG antibodies novel to the context of chorea (GAD65, 1; CASPR2, 1). In the paraneoplastic group, 14 patients had evidence of cancer. Of 13 with a histopathologically confirmed neoplasm, small-cell carcinoma and adenocarcinoma were most common; 6 patients had a cancer-predictive paraneoplastic autoantibody, with CRMP-5-IgG and ANNA-1 being most common. In the idiopathic group, 19 of the 22 patients had a coexisting autoimmune disorder (most frequently systemic lupus erythematosus and antiphospholipid syndrome); autoantibodies were detected in 21 patients, most frequently lupus and phospholipid specificities (19 patients). The paraneoplastic group was older (p = 0.001), more frequently male (p = 0.006), had more frequent weight loss (p = 0.02), and frequently had peripheral neuropathy (p = 0.008).ConclusionsAutoimmune chorea is a rare disorder with rapid onset. Male sex, older age, severe chorea, coexisting peripheral neuropathy, and weight loss increase the likelihood of cancer.
Project description:Progranulin (PGRN), Total-Tau (t-tau), and Neurofilament light chain (NfL) are well known biomarkers of neurodegeneration. The objective of the present study was to investigate whether these parameters represent also biomarkers in autoimmune-mediated Encephalitis (AE) and may give us insights into the pathomechanisms of AE. We retrospectively examined the concentration of PGRN in the cerebrospinal fluid (CSF) and serum of 38 patients suffering from AE in acute phase and/or under treatment. This AE cohort comprises patients with autoantibodies against: NMDAR (n = 18 patients), Caspr2 (n = 8), Lgi-1 (n = 10), GABAB(R) (n = 1), and AMPAR (n = 1). Additionally, the concentrations of NfL (n = 25) and t-tau (n = 13) in CSF were measured when possible. Follow up data including MRI were available in 13 patients. Several age-matched cohorts with neurological diseases besides neuroinflammation or neurodegeneration served as control groups. We observed that PGRN was significantly elevated in the CSF of patients with NMDAR-AE in the acute phase, but normalized at follow up under treatment (p < 0.01). In the CSF of other patients with AE PGRN was in the range of the CSF levels of control groups. T-tau was highly elevated in the CSF of patients with temporal FLAIR-signal in the MRI and in patients developing a hippocampal sclerosis. NfL was exceptionally high initially in Patients with AE with a paraneoplastic or parainfectious cause and also normalized under treatment. The normalizations of all biomarkers were mirrored in an improvement on the modified Rankin scale. The data suggest that the concentration of PGRN in CSF might be a biomarker for acute NMDAR-AE. Pathological high t-tau levels may indicate a risk for hippocampal sclerosis. The biomarker properties of NfL remain unclear since the levels decrease under treatment, but it could not predict severity of disease in this small cohort. According to our results, we recommend to measure in clinical practice PGRN and t-tau in the CSF of patients with AE.
Project description:Anti-IgLON family member 5 (IgLON5) disease is a rare autoimmune encephalitis, characterized by sleep problems, cognitive decline, gait abnormalities, and bulbar dysfunction. Anti–leucine-rich glioma-inactivated 1 (LGI1) autoimmune encephalitis is characterized by cognitive dysfunction, mental disorders, faciobrachial dystonic seizures (FBDS), and hyponatremia. Various studies report that coronavirus disease 2019 (COVID-19) have an effect on the nervous system and induce a wide range of neurological symptoms. Autoimmune encephalitis is one of the neurological complications in severe acute respiratory syndrome coronavirus 2 infection. Until now, autoimmune encephalitis with both anti-IgLON5 and anti-LGI1 receptor antibodies following COVID-19 is rarely reported. The case report described a 40-year-old man who presented with sleep behavior disorder, daytime sleepiness, paramnesia, cognitive decline, FBDS, and anxiety following COVID-19. Anti-IgLON5 and anti-LGI1 receptor antibodies were positive in serum, and anti-LGI1 receptor antibodies were positive in cerebrospinal fluid. The patient presented with typical symptoms of anti-IgLON5 disease such as sleep behavior disorder, obstructive sleep apnea, and daytime sleepiness. Moreover, he presented with FBDS, which is common in anti-LGI1 encephalitis. Therefore, the patient was diagnosed with anti-IgLON5 disease and anti-LGI1 autoimmune encephalitis. The patient turned better after high-dose steroid and mycophenolate mofetil therapy. The case serves to increase the awareness of rare autoimmune encephalitis after COVID-19.
Project description:Autoimmune encephalitis (AE) is a rapidly progressive inflammatory neurological disease. Underlying autoantibodies can bind to neuronal surfaces and synaptic proteins resulting in psychiatric symptoms, focal neurological signs, autonomic dysfunction and cognitive decline. Early and effective treatment is mandatory to reduce clinical symptoms and to achieve remission. Therapeutic apheresis, involving both plasma exchange (PE) and immunoadsorption (IA), can rapidly remove pathogenic antibodies from the circulation, thus representing an important first-line treatment in AE patients. We here review the most relevant studies regarding therapeutic apheresis in AE, summarizing the outcome for patients and the expanding clinical spectrum of treatment-responsive clinical conditions. For example, patients with slowly progressing cognitive impairment suggesting a neurodegenerative dementia can have underlying autoantibodies and improve with therapeutic apheresis. Findings are encouraging and have led to the first ongoing clinical studies assessing the therapeutic effect of IA in patients with anti-neuronal autoantibodies and the clinical presentation of dementia. Therapeutic apheresis is an established and well tolerated option for first-line therapy in AE and, potentially, other antibody-mediated central nervous system diseases.
Project description:This review describes the main types of autoimmune encephalitis with special emphasis on those associated with antibodies against neuronal cell surface or synaptic proteins, and the differential diagnosis with infectious encephalitis.There is a continuous expansion of the number of cell surface or synaptic proteins that are targets of autoimmunity. The most recently identified include the metabotropic glutamate receptor 5 (mGluR5), dipeptidyl-peptidase-like protein-6 (DPPX), and ?-aminobutyric acid-A receptor (GABAAR). In these and previously known types of autoimmune encephalitis [N-methyl-D-aspartate receptor (NMDAR), ?-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR), ?-aminobutyric acid-B receptor (GABABR), leucine-rich glioma inactivated protein 1 (LGI1), contactin-associated protein-like 2 (CASPR2)], the prodromal symptoms or types of presentations often suggest a viral encephalitis. We review here clues that help in the differential diagnosis with infectious encephalitis. Moreover, recent investigations indicate that viral encephalitis (e.g., herpes simplex) can trigger synaptic autoimmunity. In all these disorders, immunotherapy is usually effective.Autoimmune encephalitis comprises an expanding group of potentially treatable disorders that should be included in the differential diagnosis of any type of encephalitis.http://links.lww.com/CONR/A25,
Project description:ObjectiveAutoantibody-mediated forms of encephalitis (AE) include neurological disorders characterized by subacute memory loss, movement disorders, and, often, frequent, focal epileptic seizures. Yet, the electrophysiological effects of these autoantibodies on neuronal function have received little attention. In this study, we assessed the effects of CSF containing autoantibodies on intrinsic and extrinsic properties of hippocampal neurons, to define their epileptogenic potential.MethodsWe compared the effects of CSF containing leucine-rich glioma inactivated 1 (LGI1), contactin-associated protein-like 2 (CASPR2), and γ-aminobutyric acid receptor B (GABAB R) antibodies on ex vivo electrophysiological parameters after stereotactic hippocampal inoculation into mice. Whole-cell patch-clamp and extracellular recordings from CA1 pyramidal neurons and CA3-CA1 field recordings in ex vivo murine brain slices were used to study neuronal function.ResultsBy comparison to control CSF, AE CSFs increased the probability of glutamate release from CA3 neurons. In addition, LGI1- and CASPR2 antibodies containing CSFs induced epileptiform activity at a population level following Schaffer collateral stimulation. CASPR2 antibody containing CSF was also associated with higher spontaneous firing of CA1 pyramidal neurons. On the contrary, GABAB R antibody containing CSF did not elicit changes in intrinsic neuronal activity and field potentials.InterpretationUsing patient CSF, we have demonstrated that the AE-associated antibodies against LGI1 and CASPR2 are able to increase hippocampal CA1 neuron excitability, facilitating epileptiform activity. These findings provide in vivo pathogenic insights into neuronal dysfunction in these conditions.
Project description:Autoimmune encephalitis is a rare and debilitating disease. An important question in clinical neurology is what factors may be correlated with outcomes in autoimmune encephalitis. There is observational data describing statistical analyses on such variables, but there are no review articles that collaborate and interpret this information. This data in brief article represents the data collection for such a review (Broadley et al., 2018). Herein we summarize clinical information from 44 research articles, in particular pertaining to outcomes and prognostic variables.
Project description:Autoimmune encephalitis (AE) comprises a heterogeneous group of disorders in which the host immune system targets self-antigens expressed in the central nervous system. The most conspicuous example is an anti-N-methyl-D-aspartate receptor encephalitis linked to a complex neuropsychiatric syndrome. Current treatment of AE is based on immunotherapy and has been established according to clinical experience and along the concept of a B cell-mediated pathology induced by highly specific antibodies to neuronal surface antigens. In general, immunotherapy for AE follows an escalating approach. When first-line therapy with steroids, immunoglobulins, and/or plasma exchange fails, one converts to second-line immunotherapy. Alkylating agents could be the first choice in this stage. However, due to their side effect profile, most clinicians give preference to monoclonal antibodies (mAbs) directed at B cells such as rituximab. Newer mAbs might be added as a third-line therapy in the future, or be given even earlier if shown effective. In this chapter, we will discuss mAbs targeting B cells (rituximab, ocrelizumab, inebulizumab, daratumumab), IL-6 (tocilizumab, satralizumab), the neonatal Fc receptor (FCRn) (efgartigimod, rozanolixizumab), and the complement cascade (eculizumab).
Project description:BackgroundAnti-IgLON5 disease is a rare neurological disorder characterized by autoantibodies against IgLON5, and pathological evidence of neurodegeneration. IgLON5 is a cell adhesion molecule but its physiological function is unknown. Our aim was to investigate the IgLON5 interactome and to determine if IgLON5 antibodies (IgLON5-abs) affect these protein interactions.MethodsIgLON5 interactome was investigated by mass spectrometry sequencing of proteins immunoprecipitated by IgLON5 autoantibodies using cultures of rat cerebellar granular neurons (CGNs). Shedding of IgLON5 was explored using HEK cells transfected with human IgLON5 plasmid and in CGNs. Interactions of IgLON5 with identified binding partners and IgLON5-abs effects were confirmed by immunofluorescence in transfected HEK cells and rat hippocampal neurons.ResultsPatients' IgLON5 antibodies co-precipitated all members of the IgLON family and three 3 additional surface proteins. IgLON5 predominantly establishes homomeric and heteromeric cis (within the cell) and trans (between cells)-interactions with other IgLON family members and undergoes spontaneous ectodomain shedding. Antibodies from patients with anti-IgLON5 disease prevent trans-interactions in hippocampal neurons independently of the IgLON5 IgG subclass distribution.ConclusionsWe show a potentially novel pathogenic mechanism of IgLON5-abs that consists in blocking IgLON5 interactions with its binding partners. These findings extend our knowledge about the physiological role of IgLON5 and pave the way to future understanding of the pathological mechanisms of anti-IgLON5 disease.