Project description:Certain visual images, even in the absence of motion or flicker, can trigger seizures in patients with photosensitive epilepsy. As of yet, there is no systematic explanation as to why some static images are likely to provoke seizures, while others pose little or no risk. Here, we examined the neurophysiology literature to assess whether the pattern of neural responses in healthy visual cortex is predictive of the pathological responses in photosensitive epilepsy. Previous studies have suggested that gamma oscillations (30-80 Hz) measured in human visual cortex may play a role in seizure generation [1,2]. Recently, we and others have shown that increases in gamma band power can come from two very different cortical signals, one that is oscillatory (with a narrow peak between 30 Hz and 80 Hz), and another that is broadband[3]. The oscillatory signal arises from neuronal synchrony in the local population, while the broadband signal reflects the level of asynchronous neuronal activity, and is correlated with multiunit spiking [4]. These two responses have different biological origins and different selectivity for image properties. Here, we followed up on the previous proposals [1,2] to ask whether the image features that increase seizure likelihood in photosensitive epilepsy are linked to narrowband gamma oscillations specifically, or are associated with any kind of increase in visual activity. Based on published work, we compared pairs of image classes on a number of dimensions, and show that the type of image that elicits larger narrowband gamma oscillations in healthy visual cortex is also more likely to provoke seizures or pre-seizure activity in patients with photosensitive epilepsy. In contrast, images that elicit larger broadband, multiunit, or fMRI responses are much less predictive of seizure activity. We propose that a risk factor for seizures in patients with photosensitive epilepsy is engagement of the circuitry that produces gamma oscillations.
Project description:Simple motor tics are sudden, nonrhythmic jerk like movements that are often preceded by premonitory urge and can be voluntarily suppressed. Some clinical characteristic of tics such as variability of movement, distractibility and fluctuating course can mimic functional movement disorders. Here we report a case of motor tics where the physiological approach in addition to careful clinical assessments is helpful to support the diagnosis of tic.
Project description:Motor tics are sudden, brief, repetitive movements that constitute the main symptom of Tourette syndrome (TS). Multiple lines of evidence suggest the involvement of the cortico-basal ganglia system, and in particular the basal ganglia input structure-the striatum in tic formation. The striatum receives somatotopically organized cortical projections and contains an internal GABAergic network of interneurons and projection neurons' collaterals. Disruption of local striatal GABAergic connectivity has been associated with TS and was found to induce abnormal movements in model animals. We have previously described the behavioral and neurophysiological characteristics of motor tics induced in monkeys by local striatal microinjections of the GABAA antagonist bicuculline. In the current study we explored the abnormal movements induced by a similar manipulation in freely moving rats. We targeted microinjections to different parts of the dorsal striatum, and examined the effects of this manipulation on the induced tic properties, such as latency, duration, and somatic localization. Tics induced by striatal disinhibition in monkeys and rats shared multiple properties: tics began within several minutes after microinjection, were expressed solely in the contralateral side, and waxed and waned around a mean inter-tic interval of 1-4 s. A clear somatotopic organization was observed only in rats, where injections to the anterior or posterior striatum led to tics in the forelimb or hindlimb areas, respectively. These results suggest that striatal disinhibition in the rat may be used to model motor tics such as observed in TS. Establishing this reliable and accessible animal model could facilitate the study of the neural mechanisms underlying motor tics, and the testing of potential therapies for tic disorders.
Project description:Chronic tic disorders are characterized by motor tics that are often preceded by premonitory urges to tic. Functional neuroimaging studies have documented brain activity patterns prior to and during tics, but these studies have not examined whether the activation patterns differ from those seen in normal control subjects performing similar acts.A novel method was used to compare brain patterns during tics and intentional movements. First, the part of motor cortex specific to each patient's tic movement was identified. The brain areas activating prior to, during, and after that part of motor cortex during tics were then identified by temporally cross-correlating the time course of the localized motor region with activity in other brain areas. Given that motor cortex was active during tic execution, this yielded information regarding the brain areas active prior to, during, and after the movements. The spatiotemporal pattern of coactivation with motor cortex during tics was contrasted with that seen in healthy control subjects during intentional tic-like movements.Data from 16 adult subjects with tic disorders and 16 matched control subjects, who performed intentional movements similar to the patients' tics, revealed nearly identical patterns of cross-correlation to motor cortex throughout the brain in the two groups. However, the supplementary motor area showed a significantly broader profile of cross-correlation to motor cortex during tics than during intentional movements.These findings highlight the importance of the supplementary motor area in tic generation and may point toward novel intervention strategies for individuals suffering with severe tics.
Project description:ObjectiveTo evaluate the effect of cenobamate in patients with photoparoxysmal-EEG response (PPR) to intermittent photic stimulation (IPS) as proof of principle of efficacy in patients with epilepsy.MethodsIn this multicenter, single-blind study, adults with photosensitive epilepsy, with/without concomitant antiepileptic drug therapy, underwent IPS under 3 eye conditions after a single dose of placebo (day -1, day 2) or cenobamate (day 1; 100, 250, or 400 mg). Complete suppression was a standardized photosensitivity range reduction to 0 over ≥1 time points for all eye conditions. Partial suppression was a ≥3-point reduction over ≥3 testing times vs the same time points on day -1 in ≥1 eye condition. Pharmacokinetics and safety were assessed.ResultsOf 6 evaluable patients, 5 reentered to receive higher doses. Cenobamate 100 mg produced partial suppression in 1 of 3 patients; 250 mg produced complete suppression in 1 of 4 and partial suppression in 4 of 4 patients; and 400 mg produced complete suppression in 1 of 4 and partial suppression in 2 of 4 patients. PPR was consistently reduced on days 1 and 2 (>24 hours after cenobamate) vs day -1 (placebo) with the 250- and 400-mg doses. Area under the plasma concentration-time curve (before dose to last measurable concentration) values between 201 and 400 μg/h/mL resulted in partial suppression in 4 of 6 (66%) patients. Most common adverse events were dizziness and somnolence.ConclusionsThis proof-of-principle study demonstrated that cenobamate is a potentially effective product for epilepsy.Clinicaltrialsgov identifierNCT00616148.Classification of evidenceThis study provides Class III evidence that, for patients with photosensitive epilepsy, cenobamate suppresses IPS-induced PPR.
Project description:See Hamandi (doi:10.1093/awx049) for a scientific commentary on this article.Photosensitivity is a condition in which lights induce epileptiform activities. This abnormal electroencephalographic response has been associated with hyperexcitability of the visuo-motor system. Here, we evaluate if intrinsic dysfunction of this network is present in brain activity at rest, independently of any stimulus and of any paroxysmal electroencephalographic activity. To address this issue, we investigated the haemodynamic correlates of the spontaneous alpha rhythm, which is considered the hallmark of the brain resting state, in photosensitive patients and in people without photosensitivity. Second, we evaluated the whole-brain functional connectivity of the visual thalamic nuclei in the various populations of subjects under investigation. Forty-four patients with epilepsy and 16 healthy control subjects underwent an electroencephalography-correlated functional magnetic resonance imaging study, during an eyes-closed condition. The following patient groups were included: (i) genetic generalized epilepsy with photosensitivity, 16 subjects (mean age 25 ± 10 years); (ii) genetic generalized epilepsy without photosensitivity, 13 patients (mean age 25 ± 11 years); (iii) focal epilepsy, 15 patients (mean age 25 ± 9 years). For each subject, the posterior alpha power variations were convolved with the standard haemodynamic response function and used as a regressor. Within- and between-groups second level analyses were performed. Whole brain functional connectivity was evaluated for two thalamic regions of interest, based on the haemodynamic findings, which included the posterior thalamus (pulvinar) and the medio-dorsal thalamic nuclei. Genetic generalized epilepsy with photosensitivity demonstrated significantly greater mean alpha-power with respect to controls and other epilepsy groups. In photosensitive epilepsy, alpha-related blood oxygen level-dependent signal changes demonstrated lower decreases relative to all other groups in the occipital, sensory-motor, anterior cingulate and supplementary motor cortices. Coherently, the same brain regions demonstrated abnormal connectivity with the visual thalamus only in epilepsy patients with photosensitivity. As predicted, our findings indicate that the cortical-subcortical network generating the alpha oscillation at rest is different in people with epilepsy and visual sensitivity. This difference consists of a decreased alpha-related inhibition of the visual cortex and sensory-motor networks at rest. These findings represent the substrate of the clinical manifestations (i.e. myoclonus) of the photoparoxysmal response. Moreover, our results provide the first evidence of the existence of a functional link between the circuits that trigger the visual sensitivity phenomenon and those that generate the posterior alpha rhythm.
Project description:Variants in RORB have been reported in eight individuals with epilepsy, with phenotypes ranging from eyelid myoclonia with absence epilepsy to developmental and epileptic encephalopathies. We identified novel RORB variants in 11 affected individuals from four families. One was from whole genome sequencing and three were from RORB screening of three epilepsy cohorts: developmental and epileptic encephalopathies (n = 1021), overlap of generalized and occipital epilepsy (n = 84), and photosensitivity (n = 123). Following interviews and review of medical records, individuals' seizure and epilepsy syndromes were classified. Three novel missense variants and one exon 3 deletion were predicted to be pathogenic by in silico tools, not found in population databases, and located in key evolutionary conserved domains. Median age at seizure onset was 3.5 years (0.5-10 years). Generalized, predominantly absence and myoclonic, and occipital seizures were seen in all families, often within the same individual (6/11). All individuals with epilepsy were photosensitive, and seven of 11 had cognitive abnormalities. Electroencephalograms showed generalized spike and wave and/or polyspike and wave. Here we show a striking RORB phenotype of overlap of photosensitive generalized and occipital epilepsy in both individuals and families. This is the first report of a gene associated with this overlap of epilepsy syndromes.
Project description:BACKGROUND:SCN1A is one of the most important epilepsy-related genes, with pathogenic variants leading to a range of phenotypes with varying disease severity. Different modifying factors have been hypothesized to influence SCN1A-related phenotypes. We investigate the presence of rare and more common variants in epilepsy-related genes as potential modifiers of SCN1A-related disease severity. METHODS:87 patients with SCN1A-related epilepsy were investigated. Whole-exome sequencing was performed by the Beijing Genomics Institute (BGI). Functional variants in 422 genes associated with epilepsy and/or neuronal excitability were investigated. Differences in proportions of variants between the epilepsy genes and four control gene sets were calculated, and compared to the proportions of variants in the same genes in the ExAC database. RESULTS:Statistically significant excesses of variants in epilepsy genes were observed in the complete cohort and in the combined group of mildly and severely affected patients, particularly for variants with minor allele frequencies of <0.05. Patients with extreme phenotypes showed much greater excesses of epilepsy gene variants than patients with intermediate phenotypes. CONCLUSION:Our results indicate that relatively common variants in epilepsy genes, which would not necessarily be classified as pathogenic, may play a large role in modulating SCN1A phenotypes. They may modify the phenotypes of both severely and mildly affected patients. Our results may be a first step toward meaningful testing of modifier gene variants in regular diagnostics for individual patients, to provide a better estimation of disease severity for newly diagnosed patients.
Project description:ObjectiveThe intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current cortico-centric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural MRI in 1,602 adults with epilepsy and 1,022 healthy controls across twenty-two sites from the global ENIGMA-Epilepsy working group.MethodsA state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in i) all epilepsies; ii) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS); iii) non-lesional temporal lobe epilepsy (TLE-NL); iv) genetic generalised epilepsy; and (v) extra-temporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness.ResultsAcross all epilepsies, reduced total cerebellar volume was observed (d=0.42). Maximum volume loss was observed in the corpus medullare (dmax=0.49) and posterior lobe grey matter regions, including bilateral lobules VIIB (dmax= 0.47), Crus I/II (dmax= 0.39), VIIIA (dmax=0.45) and VIIIB (dmax=0.40). Earlier age at seizure onset (ηρ2max=0.05) and longer epilepsy duration (ηρ2max=0.06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls.SignificanceWe provide robust evidence of deep cerebellar and posterior lobe subregional grey matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in non-motor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellum subregions into neurobiological models of epilepsy.