Project description:Mammals have adapted to a variety of natural environments from underwater to aerial and these different adaptations have affected their specific perceptive and cognitive abilities. This study used a computer-controlled touchscreen system to examine the visual discrimination abilities of horses, particularly regarding size and shape, and compared the results with those from chimpanzee, human and dolphin studies. Horses were able to discriminate a difference of 14% in circle size but showed worse discrimination thresholds than chimpanzees and humans; these differences cannot be explained by visual acuity. Furthermore, the present findings indicate that all species use length cues rather than area cues to discriminate size. In terms of shape discrimination, horses exhibited perceptual similarities among shapes with curvatures, vertical/horizontal lines and diagonal lines, and the relative contributions of each feature to perceptual similarity in horses differed from those for chimpanzees, humans and dolphins. Horses pay more attention to local components than to global shapes.
Project description:Folding and stability are parameters that control protein behavior. The possibility of conferring additional stability on proteins has implications for their use in vivo and for their structural analysis in the laboratory. Cyclic polypeptides ranging in size from 14 to 78 amino acids occur naturally and often show enhanced resistance toward denaturation and proteolysis when compared with their linear counterparts. Native chemical ligation and intein-based methods allow production of circular derivatives of larger proteins, resulting in improved stability and refolding properties. Here we show that circular proteins can be made reversibly with excellent efficiency by means of a sortase-catalyzed cyclization reaction, requiring only minimal modification of the protein to be circularized.
Project description:The present paper studies the oscillatory flow of Carreau fluid in a channel at different Womersley and Carreau numbers. At high and low Womersley numbers, asymptotic expansions in small parameters, connected with the Womersley number, are developed. For the intermediate Womersley numbers, theoretical bounds for the velocity solution and its gradient, depending on the problem parameters, are proven and explicitly given. It is shown that the Carreau number changes the type of the flow velocity to be closer to the Newtonian velocity corresponding to low or high shear or to have a transitional character between both Newtonian velocities. Some numerical examples for the velocity at different Carreau and Womersley numbers are presented for illustration with respect to the similar Newtonian flow velocity.
Project description:People rarely walk in straight lines. Instead, we make frequent turns or other maneuvers. Spatiotemporal parameters fundamentally characterize gait. For straight walking, these parameters are well-defined for that task of walking on a straight path . Generalizing these concepts to non -straight walking, however, is not straightforward. People also follow non-straight paths imposed by their environment (store aisle, sidewalk, etc.) or choose readily-predictable, stereotypical paths of their own. People actively maintain lateral position to stay on their path and readily adapt their stepping when their path changes. We therefore propose a conceptually coherent convention that defines step lengths and widths relative to known walking paths. Our convention simply re-aligns lab-based coordinates to be tangent to a walker's path at the mid-point between the two footsteps that define each step. We hypothesized this would yield results both more correct and more consistent with notions from straight walking. We defined several common non-straight walking tasks: single turns, lateral lane changes, walking on circular paths, and walking on arbitrary curvilinear paths. For each, we simulated idealized step sequences denoting "perfect" performance with known constant step lengths and widths. We compared results to path-independent alternatives. For each, we directly quantified accuracy relative to known true values. Results strongly confirmed our hypothesis. Our convention returned vastly smaller errors and introduced no artificial stepping asymmetries across all tasks. All results for our convention rationally generalized concepts from straight walking. Taking walking paths explicitly into account as important task goals themselves thus resolves conceptual ambiguities of prior approaches.
Project description:The vertebrate body plan is characterized by the presence of a segmented spine along its main axis. Here, we examine the current understanding of how the axial tissues that are formed during embryonic development give rise to the adult spine and summarize recent advances in the field, largely focused on recent studies in zebrafish, with comparisons to amniotes where appropriate. We discuss recent work illuminating the genetics and biological mechanisms mediating extension and straightening of the body axis during development, and highlight open questions. We specifically focus on the processes of notochord development and cerebrospinal fluid physiology, and how defects in those processes may lead to scoliosis.
Project description:Summary Animals commonly integrate multiple sources of information to guide their behavior. Among insects, previous studies have suggested that the relative reliability of cues affects their weighting in behavior, but have not systematically explored how well alternative integration strategies can account for the observed directional choices. Here, we characterize the directional reliability of an ersatz sun at different elevations and wind at different speeds as guiding cues for a species of ball-rolling dung beetle. The relative reliability is then shown to determine which cue dominates when the cues are put in conflict. We further show through modeling that the results are best explained by continuous integration of the cues as a vector-sum (rather than switching between them) but with non-optimal weighting and small individual biases. The neural circuitry in the insect central complex appears to provide an ideal substrate for this type of vector-sum-based integration mechanism. Graphical abstract Highlights • The weight of a sun cue for orientation decreases with increasing elevation• The weight of wind as an orientation cue increases with increasing speed• Behaviorally, dung beetles integrate cues using a vector summation strategy• The insect brain is well suited to encode vector summation Biological sciences; Zoology; Ethology
Project description:Ocular saccades bringing the gaze toward the straight-ahead direction (centripetal) exhibit higher dynamics than those steering the gaze away (centrifugal). This is generally explained by oculomotor determinants: centripetal saccades are more efficient because they pull the eyes back toward their primary orbital position. However, visual determinants might also be invoked: elements located straight-ahead trigger saccades more efficiently because they receive a privileged visual processing. Here, we addressed this issue by using both pro- and anti-saccade tasks in order to dissociate the centripetal/centrifugal directions of the saccades, from the straight-ahead/eccentric locations of the visual elements triggering those saccades. Twenty participants underwent alternating blocks of pro- and anti-saccades during which eye movements were recorded binocularly at 1 kHz. The results confirm that centripetal saccades are always executed faster than centrifugal ones, irrespective of whether the visual elements have straight-ahead or eccentric locations. However, by contrast, saccades triggered by elements located straight-ahead are consistently initiated more rapidly than those evoked by eccentric elements, irrespective of their centripetal or centrifugal direction. Importantly, this double dissociation reveals that the higher dynamics of centripetal pro-saccades stem from both oculomotor and visual determinants, which act respectively on the execution and initiation of ocular saccades.
Project description:Finding valid indicators of emotional states is one of the biggest challenges in animal welfare science. Here, we investigated in horses whether variation in the expression of eye wrinkles caused by contraction of the inner eyebrow raiser reflects emotional valence. By confronting horses with positive and negative conditions, we aimed to induce positive and negative emotional states, hypothesising that positive emotions would reduce whereas negative emotions would increase eye wrinkle expression. Sixteen horses were individually exposed in a balanced order to two positive (grooming, food anticipation) and two negative conditions (food competition, waving a plastic bag). Each condition lasted for 60 seconds and was preceded by a 60 second control phase. Throughout both phases, pictures of the eyes were taken, and for each horse four pictures per condition and phase were randomly selected. Pictures were scored in random order and by two experimenters blind to condition and phase for six outcome measures: qualitative impression, eyelid shape, markedness of the wrinkles, presence of eye white, number of wrinkles, and the angle between the line through the eyeball and the highest wrinkle. The angle decreased during grooming and increased during food competition compared to control phases, whereas the two phases did not differ during food anticipation and the plastic bag condition. No effects on the other outcome measures were detected. Taken together, we have defined a set of measures to assess eye wrinkle expression reliably, of which one measure was affected by the conditions the horses were exposed to. Variation in eye wrinkle expression might provide valuable information on horse welfare but further validation of specific measures across different conditions is needed.
Project description:Hair shape is defined in the follicle: large hair follicles produce ‘terminal’ hairs, small follicles produce fine ‘vellus’ hairs, curved follicles produce curly hair in all ethnicities, according to the available literature. In order to understand better how shape is determined in the follicle and complement the publically available knowledge on hair shape genetics, our research group undertook a global high-throughput approach to compare the levels of gene expression among straight and very curly hair. The microarray was the methodology chosen. A list of the transcripts differently expressed that pass the statistical two independent groups test including correction for multiple testing (Bonferroni-Hochberg with 0.05 cut-off) was obtained. From 85 genes that were significantly different 68 genes were more expressed in very curly hair follicles and 17 genes were more expressed in straight hair follicles.
Project description:The aetiology of BMS remains an enigma, however novel evidence suggests a neuropathic basis, which may explain concomitant vulvodynia in some patients.The constant high level spontaneous chronic pain in BMS has significant functional and psychological repercussions for these patients.Cognitive behavioural therapy remains the sole evidence based management of this condition, whilst some patients respond to treatment with Tricyclic antidepressants, SSRIs or SNRIs, compliance with medication remains an issue due to pharma side effects.Increasing evidence suggests that there may be 3 subgroups that should be managed differently.