Endogenous Viral Element-Derived Piwi-Interacting RNAs (piRNAs) Are Not Required for Production of Ping-Pong-Dependent piRNAs from Diaphorina citri Densovirus.
Ontology highlight
ABSTRACT: Piwi-interacting RNAs (piRNAs) are a class of small RNAs primarily responsible for silencing transposons in the animal germ line. The ping-pong cycle, the posttranscriptional silencing branch of the piRNA pathway, relies on piRNAs produced from endogenous transposon remnants to direct cleavage of transposon RNA via association with Piwi-family Argonaute proteins. In some mosquito species and mosquito-derived cell lines expressing a functionally expanded group of Piwi-family Argonaute proteins, both RNA and DNA viruses are targeted by piRNAs in a manner thought to involve direct processing of exogenous viral RNA into piRNAs. Whether viruses are targeted by piRNAs in nonmosquito species is unknown. Partial integrations of DNA and nonretroviral RNA virus genomes, termed endogenous viral elements (EVEs), are abundant in arthropod genomes and often produce piRNAs that are speculated to target cognate viruses through the ping-pong cycle. Here, we describe a Diaphorina citri densovirus (DcDV)-derived EVE in the genome of Diaphorina citri We found that this EVE gives rise to DcDV-specific primary piRNAs and is unevenly distributed among D. citri populations. Unexpectedly, we found that DcDV is targeted by ping-pong-dependent virus-derived piRNAs (vpiRNAs) in D. citri lacking the DcDV-derived EVE, while four naturally infecting RNA viruses of D. citri are not targeted by vpiRNAs. Furthermore, a recombinant Cricket paralysis virus containing a portion of the DcDV genome corresponding to the DcDV-derived EVE was not targeted by vpiRNAs during infection in D. citri harboring the EVE. These results demonstrate that viruses can be targeted by piRNAs in a nonmosquito species independently of endogenous piRNAs.IMPORTANCE Small RNAs serve as specificity determinants of antiviral responses in insects. Piwi-interacting RNAs (piRNAs) are a class of small RNAs found in animals, and their primary role is to direct antitransposon responses. These responses require endogenous piRNAs complementary to transposon RNA. Additionally, piRNAs have been shown to target RNA and DNA viruses in some mosquito species. In contrast to transposons, targeting of viruses by the piRNA pathway in these mosquito species does not require endogenous piRNAs. Here, we show that piRNAs target a DNA virus, but not RNA viruses, in an agricultural insect pest. We found that targeting of this DNA virus did not require endogenous piRNAs and that endogenous piRNAs did not mediate targeting of an RNA virus with which they shared complementary sequence. Our results highlight differences between mosquitoes and our experimental system and raise the possibility that DNA viruses may be targeted by piRNAs in other species.
SUBMITTER: Nigg JC
PROVIDER: S-EPMC7527727 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA