Unknown

Dataset Information

0

The esterase and PHD domains in CR1-like non-LTR retrotransposons.


ABSTRACT: Most active non-LTR (long terminal repeat) retrotransposons carry two open reading frames (ORFs) encoding ORF1p and ORF2p proteins. The ORF2p proteins are relatively well studied and are known to contain endonuclease/reverse transcriptase domains. At the same time, the biological function of ORF1p proteins remains poorly understood, except in that they nonspecifically bind single-stranded mRNA/DNA molecules. CR1-like elements form the most widely distributed clade/superfamily of non-LTR retrotransposons. We found that ORF1p proteins encoded by diverse CR1-like elements contain conserved esterase domain (ES) or plant homeodomain (PHD). This indicates that CR1-like ORF1p proteins are either lipolytic enzymes or are involved in protein-protein interactions related to chromatin remodeling. Sequence conservation of ES suggests that interaction with cellular membranes is an important phase in life circles of CR1-like elements. Presumably such interaction helps in penetrating host cells. As a consequence, the presence of multiple young CR1 families characterized by approximately 10% intrafamily and 40% interfamily identities may be explained by a relatively frequent horizontal transfer of these CR1-like elements. Unexpectedly, ES links together non-LTR retrotransposons and single-stranded RNA viruses like influenza C and coronaviruses, which are known to depend on their own ES.

SUBMITTER: Kapitonov VV 

PROVIDER: S-EPMC7528939 | biostudies-literature | 2003 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

The esterase and PHD domains in CR1-like non-LTR retrotransposons.

Kapitonov Vladimir V VV   Jurka Jerzy J  

Molecular biology and evolution 20030101 1


Most active non-LTR (long terminal repeat) retrotransposons carry two open reading frames (ORFs) encoding ORF1p and ORF2p proteins. The ORF2p proteins are relatively well studied and are known to contain endonuclease/reverse transcriptase domains. At the same time, the biological function of ORF1p proteins remains poorly understood, except in that they nonspecifically bind single-stranded mRNA/DNA molecules. CR1-like elements form the most widely distributed clade/superfamily of non-LTR retrotra  ...[more]

Similar Datasets

| S-EPMC1925062 | biostudies-literature
| S-EPMC2630067 | biostudies-literature
| S-EPMC3905857 | biostudies-literature
| S-EPMC2790886 | biostudies-literature
| S-EPMC3248453 | biostudies-literature
| S-EPMC1206989 | biostudies-other
| S-EPMC2612034 | biostudies-literature
| S-EPMC5850137 | biostudies-literature
| S-EPMC2686373 | biostudies-literature
| S-EPMC5554003 | biostudies-other