Ontology highlight
ABSTRACT: Background
Microbial origin polysaccharides have gained popularity due to lesser toxicity, better degradability and selectivity as compared to their synthetic counterparts and can be used as emulsifier, stabilizer, thickener, texturizer, flocculating and gelling agent. Here main emphasis on exopolysaccharide production from potential lactic acid bacteria that has GRAS status.Results
This work was aimed at isolating, purifying and characterizing an extracellular polysaccharide (EPS) produced by a foodgrade lactic acid bacteria Lactobacillus paraplantarum KM1. L. paraplantarum KM1 was isolated from human milk and identified by conventional and molecular techniques. The 16S rRNA sequence of the isolate was registered in National Centre for Biotechnology Information (NCBI) under accession number KX671558. L. paraplantarum KM1 was found to produce EPSs in lactose containing MRS medium, and the maximum yield (47.4?mg/ml) was achieved after 32-h incubation. As evident from TLC and HPLC analyses, the polysaccharide was found to be a heteropolymer-containing glucose, galactose and mannose as main sugars. Different oligosaccharides namely hexoses were obtained after partial hydrolysis of the polymer using MALDI-ToF-MS. The total molecular weight of all polysaccharides present was 348.7?kDa with 100?°C thermal stability as well as water soluble in nature. Cell cytotoxicity revealed that the purified EPS was safe for consumption; thus, it can be used in various food industries as emulsifying and texture agent.Conclusions
The present study highlighted that exopolysaccharides could be harnessed to improve food products in terms of texture, emulsifying agents, pharmaceutical industry (antioxidants, antitumour, anti-inflammatory and antiviral agents) and as safety purposes.
SUBMITTER: Sharma K
PROVIDER: S-EPMC7532255 | biostudies-literature | 2020 Oct
REPOSITORIES: biostudies-literature
Journal, genetic engineering & biotechnology 20201002 1
<h4>Background</h4>Microbial origin polysaccharides have gained popularity due to lesser toxicity, better degradability and selectivity as compared to their synthetic counterparts and can be used as emulsifier, stabilizer, thickener, texturizer, flocculating and gelling agent. Here main emphasis on exopolysaccharide production from potential lactic acid bacteria that has GRAS status.<h4>Results</h4>This work was aimed at isolating, purifying and characterizing an extracellular polysaccharide (EP ...[more]