Unknown

Dataset Information

0

In situ and Ex situ Catalytic Pyrolysis of Microalgae and Integration With Pyrolytic Fractionation.


ABSTRACT: Microalgae are attractive feedstocks for biofuel production and are especially suitable for thermochemical conversion due to the presence of thermally labile constituents-lipids, starch and protein. However, the thermal degradation of starch and proteins produces water as well as other O- and N-compounds that are mixed-in with energy-dense lipid pyrolysis products. To produce hydrocarbon-rich products from microalgae biomass, we assessed in situ and ex situ catalytic pyrolysis of a lipid-rich Chlorella sp. in the presence of the HZSM-5 zeolite catalyst over a temperature range of 450-550°C. Results show that product yields and compositions were similar under both in situ and ex situ conditions with benzene, toluene and xylene produced as the primary aromatic products. Yields of aromatics increased with increasing temperature and the highest aromatic yield (36.4% g aromatics/g ash-free microalgae) and selectivity (87% g aromatics/g bio-oil) was obtained at 550°C. Also, at this temperature, oxygenates and nitrogenous compounds were not detected among the liquid products during ex situ catalytic pyrolysis. We also assessed the feasibility of a two-step fractional pyrolysis approach integrated with vapor phase catalytic upgrading. In these experiments, the biomass was first pyrolyzed at 320°C to degrade and volatilize starch, protein and free fatty acids. Then, the residual biomass was pyrolyzed again at 450°C to recover products from triglyceride decomposition. The volatiles from each fraction were passed through an ex situ catalyst bed. Results showed that net product yields from the 2-step process were similar to the single step ex situ catalytic pyrolysis at 450°C indicating that tailored vapor phase upgrading can be applied to allow separate recovery of products from the chemically distinct biomass components-(1) lower calorific value starch and proteins and (2) energy-dense lipids.

SUBMITTER: Shirazi Y 

PROVIDER: S-EPMC7533611 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

<i>In situ</i> and <i>Ex situ</i> Catalytic Pyrolysis of Microalgae and Integration With Pyrolytic Fractionation.

Shirazi Yaser Y   Viamajala Sridhar S   Varanasi Sasidhar S  

Frontiers in chemistry 20200910


Microalgae are attractive feedstocks for biofuel production and are especially suitable for thermochemical conversion due to the presence of thermally labile constituents-lipids, starch and protein. However, the thermal degradation of starch and proteins produces water as well as other O- and N-compounds that are mixed-in with energy-dense lipid pyrolysis products. To produce hydrocarbon-rich products from microalgae biomass, we assessed <i>in situ</i> and <i>ex situ</i> catalytic pyrolysis of a  ...[more]

Similar Datasets

| S-EPMC10420871 | biostudies-literature
| S-EPMC7915913 | biostudies-literature
| S-EPMC7407590 | biostudies-literature
| S-EPMC11022236 | biostudies-literature
| PRJEB36972 | ENA
| S-EPMC8402610 | biostudies-literature
| S-EPMC7767908 | biostudies-literature
| S-EPMC7921008 | biostudies-literature
| S-EPMC10537089 | biostudies-literature
| S-EPMC8715730 | biostudies-literature