Unknown

Dataset Information

0

MSpectraAI: a powerful platform for deciphering proteome profiling of multi-tumor mass spectrometry data by using deep neural networks.


ABSTRACT:

Background

Mass spectrometry (MS) has become a promising analytical technique to acquire proteomics information for the characterization of biological samples. Nevertheless, most studies focus on the final proteins identified through a suite of algorithms by using partial MS spectra to compare with the sequence database, while the pattern recognition and classification of raw mass-spectrometric data remain unresolved.

Results

We developed an open-source and comprehensive platform, named MSpectraAI, for analyzing large-scale MS data through deep neural networks (DNNs); this system involves spectral-feature swath extraction, classification, and visualization. Moreover, this platform allows users to create their own DNN model by using Keras. To evaluate this tool, we collected the publicly available proteomics datasets of six tumor types (a total of 7,997,805 mass spectra) from the ProteomeXchange consortium and classified the samples based on the spectra profiling. The results suggest that MSpectraAI can distinguish different types of samples based on the fingerprint spectrum and achieve better prediction accuracy in MS1 level (average 0.967).

Conclusion

This study deciphers proteome profiling of raw mass spectrometry data and broadens the promising application of the classification and prediction of proteomics data from multi-tumor samples using deep learning methods. MSpectraAI also shows a better performance compared to the other classical machine learning approaches.

SUBMITTER: Wang S 

PROVIDER: S-EPMC7539376 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

MSpectraAI: a powerful platform for deciphering proteome profiling of multi-tumor mass spectrometry data by using deep neural networks.

Wang Shisheng S   Zhu Hongwen H   Zhou Hu H   Cheng Jingqiu J   Yang Hao H  

BMC bioinformatics 20201007 1


<h4>Background</h4>Mass spectrometry (MS) has become a promising analytical technique to acquire proteomics information for the characterization of biological samples. Nevertheless, most studies focus on the final proteins identified through a suite of algorithms by using partial MS spectra to compare with the sequence database, while the pattern recognition and classification of raw mass-spectrometric data remain unresolved.<h4>Results</h4>We developed an open-source and comprehensive platform,  ...[more]

Similar Datasets

| S-EPMC8262114 | biostudies-literature
| S-EPMC3770533 | biostudies-literature
| S-EPMC5769801 | biostudies-literature
| S-EPMC5711600 | biostudies-literature
| S-EPMC8176402 | biostudies-literature
| S-EPMC8138768 | biostudies-literature
| S-EPMC6487538 | biostudies-literature
| S-EPMC10104575 | biostudies-literature
2023-01-18 | GSE208086 | GEO
| S-EPMC8452737 | biostudies-literature