Unknown

Dataset Information

0

An Expectation Conditional Maximization approach for Gaussian graphical models.


ABSTRACT: Bayesian graphical models are a useful tool for understanding dependence relationships among many variables, particularly in situations with external prior information. In high-dimensional settings, the space of possible graphs becomes enormous, rendering even state-of-the-art Bayesian stochastic search computationally infeasible. We propose a deterministic alternative to estimate Gaussian and Gaussian copula graphical models using an Expectation Conditional Maximization (ECM) algorithm, extending the EM approach from Bayesian variable selection to graphical model estimation. We show that the ECM approach enables fast posterior exploration under a sequence of mixture priors, and can incorporate multiple sources of information.

SUBMITTER: Li ZR 

PROVIDER: S-EPMC7540244 | biostudies-literature | 2019

REPOSITORIES: biostudies-literature

altmetric image

Publications

An Expectation Conditional Maximization approach for Gaussian graphical models.

Li Zehang Richard ZR   McCormick Tyler H TH  

Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America 20190619 4


Bayesian graphical models are a useful tool for understanding dependence relationships among many variables, particularly in situations with external prior information. In high-dimensional settings, the space of possible graphs becomes enormous, rendering even state-of-the-art Bayesian stochastic search computationally infeasible. We propose a deterministic alternative to estimate Gaussian and Gaussian copula graphical models using an Expectation Conditional Maximization (ECM) algorithm, extendi  ...[more]

Similar Datasets

| S-EPMC3865369 | biostudies-literature
| S-EPMC7186311 | biostudies-literature
| S-EPMC4307846 | biostudies-literature
| S-EPMC6456846 | biostudies-literature
| S-EPMC9672860 | biostudies-literature
| S-EPMC6916355 | biostudies-literature
| S-EPMC9665865 | biostudies-literature
| S-EPMC6555200 | biostudies-literature
| S-EPMC3419502 | biostudies-literature
| S-EPMC4855479 | biostudies-literature