Unknown

Dataset Information

0

Four-Dimensional Deoxyribonucleic Acid-Gold Nanoparticle Assemblies.


ABSTRACT: Organization of gold nanoobjects by oligonucleotides has resulted in many three-dimensional colloidal assemblies with diverse size, shape, and complexity; nonetheless, autonomous and temporal control during formation remains challenging. In contrast, living systems temporally and spatially self-regulate formation of functional structures by internally orchestrating assembly and disassembly kinetics of dissipative biomacromolecular networks. We present a novel approach for fabricating four-dimensional gold nanostructures by adding an additional dimension: time. The dissipative character of our system is achieved using exonuclease III digestion of deoxyribonucleic acid (DNA) fuel as an energy-dissipating pathway. Temporal control over amorphous clusters composed of spherical gold nanoparticles (AuNPs) and well-defined core-satellite structures from gold nanorods (AuNRs) and AuNPs is demonstrated. Furthermore, the high specificity of DNA hybridization allowed us to demonstrate selective activation of the evolution of multiple architectures of higher complexity in a single mixture containing small and larger spherical AuNPs and AuNRs.

SUBMITTER: Luo M 

PROVIDER: S-EPMC7540408 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Four-Dimensional Deoxyribonucleic Acid-Gold Nanoparticle Assemblies.

Luo Ming M   Xuan Mingjun M   Huo Shuaidong S   Fan Jilin J   Chakraborty Gurudas G   Wang Yixi Y   Zhao Hui H   Herrmann Andreas A   Zheng Lifei L  

Angewandte Chemie (International ed. in English) 20200728 39


Organization of gold nanoobjects by oligonucleotides has resulted in many three-dimensional colloidal assemblies with diverse size, shape, and complexity; nonetheless, autonomous and temporal control during formation remains challenging. In contrast, living systems temporally and spatially self-regulate formation of functional structures by internally orchestrating assembly and disassembly kinetics of dissipative biomacromolecular networks. We present a novel approach for fabricating four-dimens  ...[more]

Similar Datasets

| S-EPMC5706264 | biostudies-literature
| S-EPMC3565170 | biostudies-other
| S-EPMC2657223 | biostudies-literature
| S-EPMC8191498 | biostudies-literature
| S-EPMC3984384 | biostudies-literature
| S-EPMC3895872 | biostudies-other
| S-EPMC3241524 | biostudies-literature
| S-EPMC3777812 | biostudies-literature
| S-EPMC3795944 | biostudies-literature
| S-EPMC8703110 | biostudies-literature