Unknown

Dataset Information

0

Beyond the limits of photoperception: constitutively active PHYTOCHROME B2 overexpression as a means of improving fruit nutritional quality in tomato.


ABSTRACT: Photoreceptor engineering has recently emerged as a means for improving agronomically beneficial traits in crop species. Despite the central role played by the red/far-red photoreceptor phytochromes (PHYs) in controlling fruit physiology, the applicability of PHY engineering for increasing fleshy fruit nutritional content remains poorly exploited. In this study, we demonstrated that the fruit-specific overexpression of a constitutively active GAF domain Tyr252 -to-His PHYB2 mutant version (PHYB2Y252H ) significantly enhances the accumulation of multiple health-promoting antioxidants in tomato fruits, without negative collateral consequences on vegetative development. Compared with the native PHYB2 overexpression, PHYB2Y252H -overexpressing lines exhibited more extensive increments in transcript abundance of genes associated with fruit plastid development, chlorophyll biosynthesis and metabolic pathways responsible for the accumulation of antioxidant compounds. Accordingly, PHYB2Y252H -overexpressing fruits developed more chloroplasts containing voluminous grana at the green stage and overaccumulated carotenoids, tocopherols, flavonoids and ascorbate in ripe fruits compared with both wild-type and PHYB2-overexpressing lines. The impacts of PHYB2 or PHYB2Y252H overexpression on fruit primary metabolism were limited to a slight promotion in lipid biosynthesis and reduction in sugar accumulation. Altogether, these findings indicate that mutation-based adjustments in PHY properties represent a valuable photobiotechnological tool for tomato biofortification, highlighting the potential of photoreceptor engineering for improving quality traits in fleshy fruits.

SUBMITTER: Alves FRR 

PROVIDER: S-EPMC7540714 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Beyond the limits of photoperception: constitutively active PHYTOCHROME B2 overexpression as a means of improving fruit nutritional quality in tomato.

Alves Frederico Rocha Rodrigues FRR   Lira Bruno Silvestre BS   Pikart Filipe Christian FC   Monteiro Scarlet Santos SS   Furlan Cláudia Maria CM   Purgatto Eduardo E   Pascoal Grazieli Benedetti GB   Andrade Sónia Cristina da Silva SCDS   Demarco Diego D   Rossi Magdalena M   Freschi Luciano L  

Plant biotechnology journal 20200401 10


Photoreceptor engineering has recently emerged as a means for improving agronomically beneficial traits in crop species. Despite the central role played by the red/far-red photoreceptor phytochromes (PHYs) in controlling fruit physiology, the applicability of PHY engineering for increasing fleshy fruit nutritional content remains poorly exploited. In this study, we demonstrated that the fruit-specific overexpression of a constitutively active GAF domain Tyr<sup>252</sup> -to-His PHYB2 mutant ver  ...[more]

Similar Datasets

| S-EPMC470770 | biostudies-literature
| S-EPMC10069882 | biostudies-literature
| S-EPMC3310224 | biostudies-literature
| S-EPMC7254041 | biostudies-literature
| S-EPMC4272553 | biostudies-literature
| S-EPMC10421076 | biostudies-literature
| S-EPMC6284034 | biostudies-literature
| S-EPMC7187367 | biostudies-literature
| S-EPMC4034497 | biostudies-literature
| S-EPMC6304366 | biostudies-literature