Unknown

Dataset Information

0

Electron cyclotron motion excited surface plasmon and radiation with orbital angular momentum on a semiconductor thin film.


ABSTRACT: In this work, surface plasmons (SPs) on a germanium (Ge) thin film in terahertz (THz) region that are excited by electron cyclotron motion (ECM) and the subsequent SP emission (SPE) by adding Ge gratings on the film are explored by finite-difference time-domain (FDTD) and particle-in-cell FDTD (PIC-FDTD) simulations. The optical properties of ECM-excited SPs are the same as those of SPs that are excited by electron straight motion (ESM). For operating at the flat band of SPs' dispersion curve on the Ge film, changing the electron energy will only change the wavevector of SPs and hence the number of periods of SPs on the circular orbital. When the periodic gratings are deposited on the Ge film along the circular orbital of electrons, the emitted SPE contains the orbital angular momentum (OAM). The number of arms and chirality of the spiral patterns in phase map (i.e. the quantum number of OAM) of SPE are determined by the difference between the number of SPs' periods and the number of gratings. Manipulations of the quantum number of OAM by changing the number of gratings for a fixed electron energy and by changing the electron energy for a fixed number of gratings are also demonstrated. This work provides an active OAM source and it is not required to launch circularly polarized beams or pumping beams into the structure.

SUBMITTER: Lan YC 

PROVIDER: S-EPMC7541642 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Electron cyclotron motion excited surface plasmon and radiation with orbital angular momentum on a semiconductor thin film.

Lan Yung-Chiang YC   Shen Chia-Hui CH   Chen Chih-Min CM  

Scientific reports 20201007 1


In this work, surface plasmons (SPs) on a germanium (Ge) thin film in terahertz (THz) region that are excited by electron cyclotron motion (ECM) and the subsequent SP emission (SPE) by adding Ge gratings on the film are explored by finite-difference time-domain (FDTD) and particle-in-cell FDTD (PIC-FDTD) simulations. The optical properties of ECM-excited SPs are the same as those of SPs that are excited by electron straight motion (ESM). For operating at the flat band of SPs' dispersion curve on  ...[more]

Similar Datasets

| S-EPMC4677297 | biostudies-literature
| S-EPMC4616018 | biostudies-other
| S-EPMC6642184 | biostudies-literature
| S-EPMC4901338 | biostudies-literature
| S-EPMC10073211 | biostudies-literature
| S-EPMC5469808 | biostudies-other
| S-EPMC4932607 | biostudies-literature
| S-EPMC5011649 | biostudies-literature
| S-EPMC9359470 | biostudies-literature
| S-EPMC6504950 | biostudies-literature