Protective Effects of Grape Seed Proanthocyanidins on the Kidneys of Diabetic Rats through the Nrf2 Signalling Pathway
Ontology highlight
ABSTRACT: Background Diabetic nephropathy (DN) is the most common cause of end-stage renal failure. Grape seed proanthocyanidin extract (GSPE) is a powerful antioxidant that is believed to protect the kidney through antioxidant action. However, the underlying mechanism of GSPE protection against DN remains unclear. Objective To explore if GSPE can improve DN by activating nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant response element signalling and to clarify its possible mechanism. Materials and methods. Ten healthy Sprague-Dawley rats were randomly selected as controls. Rats with streptozotocin-induced diabetes were randomly divided into three groups (10 animals/group): type 2 diabetes mellitus (T2DM) group (untreated), L-GSPE group (treated with 125-mg/kg/day GSPE for 8 weeks), and H-GSPE group (treated with 250?mg/kg/day GSPE for 8 weeks). Results Renal histopathological results indicated limited pathological damage in GSPE-treated groups. Compared with the T2DM group, the H-GSPE group had significantly reduced kidney weight and renal index. Similarly, the levels of fasting blood glucose, serum creatinine, blood urea nitrogen, uric acid, urinary albumin, and renal malondialdehyde (p < 0.05) were also significantly decreased. In addition, GSPE significantly increased the levels of superoxide dismutase, total antioxidative capability, and glutathione (p < 0.05) as well as the protein levels of Nrf2, HO-1, glutathione S-transferase, and NAD (P)H quinone oxidoreductase 1 (p < 0.05). Conclusion The results indicate that GSPE reduced renal damage in rats with diabetes by activating the Nrf2 signalling pathway, which consequently increased the antioxidant capacity of the tissue. Therefore, GSPE is a potential natural agent for the treatment of diabetic nephropathy.
SUBMITTER: Ding Y
PROVIDER: S-EPMC7542509 | biostudies-literature | 2020 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA