Ontology highlight
ABSTRACT: Background
Metabolomics data analyses rely on the use of bioinformatics tools. Many integrated multi-functional tools have been developed for untargeted metabolomics data processing and have been widely used. More alternative platforms are expected for both basic and advanced users.Results
Integrated mass spectrometry-based untargeted metabolomics data mining (IP4M) software was designed and developed. The IP4M, has 62 functions categorized into 8 modules, covering all the steps of metabolomics data mining, including raw data preprocessing (alignment, peak de-convolution, peak picking, and isotope filtering), peak annotation, peak table preprocessing, basic statistical description, classification and biomarker detection, correlation analysis, cluster and sub-cluster analysis, regression analysis, ROC analysis, pathway and enrichment analysis, and sample size and power analysis. Additionally, a KEGG-derived metabolic reaction database was embedded and a series of ratio variables (product/substrate) can be generated with enlarged information on enzyme activity. A new method, GRaMM, for correlation analysis between metabolome and microbiome data was also provided. IP4M provides both a number of parameters for customized and refined analysis (for expert users), as well as 4 simplified workflows with few key parameters (for beginners who are unfamiliar with computational metabolomics). The performance of IP4M was evaluated and compared with existing computational platforms using 2 data sets derived from standards mixture and 2 data sets derived from serum samples, from GC-MS and LC-MS respectively.Conclusion
IP4M is powerful, modularized, customizable and easy-to-use. It is a good choice for metabolomics data processing and analysis. Free versions for Windows, MAC OS, and Linux systems are provided.
SUBMITTER: Liang D
PROVIDER: S-EPMC7542974 | biostudies-literature | 2020 Oct
REPOSITORIES: biostudies-literature
Liang Dandan D Liu Quan Q Zhou Kejun K Jia Wei W Xie Guoxiang G Chen Tianlu T
BMC bioinformatics 20201007 1
<h4>Background</h4>Metabolomics data analyses rely on the use of bioinformatics tools. Many integrated multi-functional tools have been developed for untargeted metabolomics data processing and have been widely used. More alternative platforms are expected for both basic and advanced users.<h4>Results</h4>Integrated mass spectrometry-based untargeted metabolomics data mining (IP4M) software was designed and developed. The IP4M, has 62 functions categorized into 8 modules, covering all the steps ...[more]