Metabolic acidosis exacerbates pyelonephritis in mice prone to vesicoureteral reflux.
Ontology highlight
ABSTRACT: Acute pyelonephritis is a common, serious bacterial infection in children. The prevalence of acute pyelonephritis is due at least in part to vesicoureteral reflux (VUR). Although an association between abnormalities in electrolyte and acid-base balance and pyelonephritis is common in young children, the impact of metabolic acidosis (MA) on progression of acute pyelonephritis is not fully understood. In this study, the effect of MA on pyelonephritis was studied in C3H mouse strains prone to VUR. MA induced by ammonium chloride supplementation in food specifically impaired clearance of urinary tract infection with uropathogenic Escherichia. coli (UPEC-UTI) in innate immune competent C3H strains (HeOuJ, HeN), whereas kidney UPEC burden in Tlr-4-deficient HeJ mice was unaffected. Antibody-mediated depletion of myeloid cells (monocytes, neutrophil) markedly increased UPEC burden in the bladder and kidney confirming the pivotal role of neutrophils and tissue-resident macrophages in clearance of UPEC-UTI. MA concurrent with UPEC-UTI markedly increased expression of cytokine (TNF?, IL-1?, IL-6) and chemokine (CXCL 1, 2, and 5) mRNA in isolated kidney CD cells and kidney neutrophil infiltrates were increased four- to fivefold compared to normal, UPEC-infected mice. Thus, MA intensified pyelonephritis and increased the risk of kidney injury by impairing clearance of UPEC-UTI and potentiating renal inflammation characterized by an elevated kidney neutrophil infiltrate.
SUBMITTER: Purkerson JM
PROVIDER: S-EPMC7543054 | biostudies-literature | 2020 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA