Enhanced DNA repair by DNA photolyase bearing an artificial light-harvesting chromophore.
Ontology highlight
ABSTRACT: Photolyases are flavoenzymes responsible for the repair of carcinogenic DNA damage caused by ultraviolet radiation. They harbor the catalytic cofactor flavin adenine dinucleotide (FAD). The light-driven electron transfer from the excited state of the fully-reduced form of FAD to the DNA lesions causes rearrangement of the covalent bonds, leading to the restoration of intact nucleobases. In addition to the catalytic chromophore, some photolyases bear a secondary chromophore with better light absorption capability than FAD, acting as a light-harvesting chromophore that harvests photons in sunlight efficiently and transfers light energy to the catalytic center, as observed in natural photoreceptor proteins. Inspired by nature, we covalently and site-specifically attached a synthetic chromophore to the surface of photolyase using oligonucleotides containing a modified nucleoside and a cyclobutane-type DNA lesion, and successfully enhanced its enzymatic activity in the light-driven DNA repair. Peptide mapping in combination with theoretical calculations identified the amino acid residue that binds to the chromophore, working as an artificial light-harvesting chromophore. Our results broaden the strategies for protein engineering and provide a guideline for tuning of the light perception abilities and enzymatic activity of the photoreceptor proteins.
SUBMITTER: Terai Y
PROVIDER: S-EPMC7544235 | biostudies-literature | 2020 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA