CRISPR-Cas12a with an oAd Induces Precise and Cancer-Specific Genomic Reprogramming of EGFR and Efficient Tumor Regression.
Ontology highlight
ABSTRACT: CRISPR-Cas12a represents a class 2/type V CRISPR RNA-guided endonuclease, holding promise as a precise genome-editing tool in vitro and in vivo. For efficient delivery of the CRISPR-Cas system into cancer, oncolytic adenovirus (oAd) has been recognized as a promising alternative vehicle to conventional cancer therapy, owing to its cancer specificity; however, to our knowledge, it has not been used for genome editing. In this study, we show that CRISPR-Cas12a mediated by oAd disrupts the oncogenic signaling pathway with excellent cancer specificity. The intratumoral delivery of a single oAd co-expressing a Cas12a and a CRISPR RNA (crRNA) targeting the epidermal growth factor receptor (EGFR) gene (oAd/Cas12a/crEGFR) induces efficient and precise editing of the targeted EGFR gene in a cancer-specific manner, without detectable off-target nuclease activity. Importantly, oAd/Cas12a/crEGFR elicits a potent antitumor effect via robust induction of apoptosis and inhibition of tumor cell proliferation, ultimately leading to complete tumor regression in a subset of treated mice. Collectively, in this study we show precise genomic reprogramming via a single oAd vector-mediated CRISPR-Cas system and the feasibility of such system as an alternative cancer therapy.
SUBMITTER: Yoon AR
PROVIDER: S-EPMC7545006 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA