Unknown

Dataset Information

0

Investigation of interaction between boronic acids and sugar: effect of structural change of sugars on binding affinity using steady state and time resolved fluorescence spectroscopy and molecular docking.


ABSTRACT: Binding interactions of boronic acid derivatives viz. 2-Methylphenylboronic acid (B1) and 3-Methoxyphenylboronic acid (B2) with mono saccharides (arabinose, fructose and galactose) and disaccharides (sucrose, lactose and maltose) in aqueous condition at pH 7.4 by means of fluorescence spectroscopy is reported in the present investigation. Sugar sensing as well as continuous glucose monitoring (CGM) plays a significant role in diabetes regulation. Sugar sensors mediated through enzymes have their own drawbacks, which led to encouragement to search for designing new sensors through alternate approaches. Among many, fluorescence-based sensors are drawing more attention. Boronic acid-based fluorescence sensors have the capacity to bind reversibly with diols, which makes their demand high in applications. Addition of sugar reduces fluorescence intensities. Change in intensities is associated to cleavage of intermolecular hydrogen bonding which leads in reduced stability of boronate ester. Lineweaver-Burk and Benesi-Hildebrand equation is used for analysing data. Mono sugars are estimated to have higher binding constants. Mutarotation leads to structural changes in saccharides which play a key role in binding interactions. Sugars in furanose form are found to be highly favoured for binding. Molecular docking of B1 and B2 with proteins with PDB ID: 2IPL and 2IPM being periplasmic was done with the help of Schrodinger Maestro 11.2 version. GLIDE scores terms are used for expressing binding affinity.

SUBMITTER: Melavanki R 

PROVIDER: S-EPMC7550931 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Investigation of interaction between boronic acids and sugar: effect of structural change of sugars on binding affinity using steady state and time resolved fluorescence spectroscopy and molecular docking.

Melavanki Raveendra R   Kusanur Raviraj R   Sadasivuni Kishor Kumar KK   Singh Diksha D   Patil N R NR  

Heliyon 20201007 10


Binding interactions of boronic acid derivatives viz. 2-Methylphenylboronic acid (B1) and 3-Methoxyphenylboronic acid (B2) with mono saccharides (arabinose, fructose and galactose) and disaccharides (sucrose, lactose and maltose) in aqueous condition at pH 7.4 by means of fluorescence spectroscopy is reported in the present investigation. Sugar sensing as well as continuous glucose monitoring (CGM) plays a significant role in diabetes regulation. Sugar sensors mediated through enzymes have their  ...[more]

Similar Datasets

| S-EPMC9047439 | biostudies-literature
| S-EPMC3946559 | biostudies-literature
| S-EPMC5780552 | biostudies-literature
| S-EPMC2733762 | biostudies-literature
| S-EPMC5144092 | biostudies-literature
| S-EPMC4171753 | biostudies-other
| S-EPMC6491427 | biostudies-literature
| S-EPMC6961130 | biostudies-literature
| S-EPMC2766393 | biostudies-literature
| S-EPMC6631026 | biostudies-literature