Project description:BackgroundThis study aimed to investigate overall and sex-specific excess all-cause mortality since the inception of the COVID-19 pandemic until August 2020 among 22 countries.MethodsCountries reported weekly or monthly all-cause mortality from January 2015 until the end of June or August 2020. Weekly or monthly COVID-19 deaths were reported for 2020. Excess mortality for 2020 was calculated by comparing weekly or monthly 2020 mortality (observed deaths) against a baseline mortality obtained from 2015-2019 data for the same week or month using two methods: (i) difference in observed mortality rates between 2020 and the 2015-2019 average and (ii) difference between observed and expected 2020 deaths.ResultsBrazil, France, Italy, Spain, Sweden, the UK (England, Wales, Northern Ireland and Scotland) and the USA demonstrated excess all-cause mortality, whereas Australia, Denmark and Georgia experienced a decrease in all-cause mortality. Israel, Ukraine and Ireland demonstrated sex-specific changes in all-cause mortality.ConclusionsAll-cause mortality up to August 2020 was higher than in previous years in some, but not all, participating countries. Geographical location and seasonality of each country, as well as the prompt application of high-stringency control measures, may explain the observed variability in mortality changes.
Project description:Comparing the impact of the COVID-19 pandemic between countries or across time is difficult because the reported numbers of cases and deaths can be strongly affected by testing capacity and reporting policy. Excess mortality, defined as the increase in all-cause mortality relative to the expected mortality, is widely considered as a more objective indicator of the COVID-19 death toll. However, there has been no global, frequently-updated repository of the all-cause mortality data across countries. To fill this gap, we have collected weekly, monthly, or quarterly all-cause mortality data from 94 countries and territories, openly available as the regularly-updated World Mortality Dataset. We used this dataset to compute the excess mortality in each country during the COVID-19 pandemic. We found that in several worst-affected countries (Peru, Ecuador, Bolivia, Mexico) the excess mortality was above 50% of the expected annual mortality. At the same time, in several other countries (Australia, New Zealand) mortality during the pandemic was below the usual level, presumably due to social distancing measures decreasing the non-COVID infectious mortality. Furthermore, we found that while many countries have been reporting the COVID-19 deaths very accurately, some countries have been substantially underreporting their COVID-19 deaths (e.g. Nicaragua, Russia, Uzbekistan), sometimes by two orders of magnitude (Tajikistan). Our results highlight the importance of open and rapid all-cause mortality reporting for pandemic monitoring.
Project description:Thailand has experienced the most prominent COVID-19 outbreak in 2021, resulting in a new record for COVID-19 cases and deaths. To assess the influence of the COVID-19 outbreak on mortality, we estimated excess all-cause and pneumonia mortality in Thailand during the COVID-19 outbreak from April to October 2021. We used mortality from the previous 5 years to estimate the baseline number of deaths using generalized linear mixed models. The models were adjusted for seasonality and demographics. We found that, during the outbreak in 2021, there was a significant rise in excess fatalities, especially in the older age groups. The estimated cumulative excess death was 14.3% (95% CI: 8.6-18.8%) higher than the baseline. The results also showed that the excess deaths in males were higher than in females by approximately 26.3%. The excess deaths directly caused by the COVID-19 infections accounted for approximately 75.0% of the all-cause excess deaths. Furthermore, excess pneumonia deaths were also found to be 26.2% (95% CI: 4.8-46.0%) above baseline.
Project description:BackgroundExcess all-cause mortality is helpful to assess the full extent of the health impact, including direct and indirect deaths of coronavirus disease 2019 (COVID-19). The study aimed to estimate overall and regional excess all-cause mortality during the pandemic in Korea.MethodsWe obtained all-cause death data and population statistics from January 2010 to December 2020. The expected mortality in 2020 was estimated using a quasi-Poisson regression model. The model included death year, seasonal variation, cold wave (January), average death counts in the previous month, and population. Excess mortality was defined as the difference between the observed mortality and the expected mortality. Regions were classified into three areas according to the numbers of COVID-19 cases.ResultsThere was no annual excess all-cause mortality in 2020 at the national and regional level compared to the average death for the previous ten years. The observed mortality in 2020 was 582.9 per 100,000 people, and the expected mortality was 582.3 per 100,000 people (95% confidence interval, 568.3-596.7). However, we found monthly and regional variations depending on the waves of the COVID-19 pandemic in Korea. While the mortality in August, October, and November exceeded the expected range, the mortality in September was lower than the expected range. The months in which excess deaths were identified differed by region.ConclusionOur results show that the mortality in 2020 was similar to the historical trend. However, in the era of the COVID-19 pandemic, it would be necessary to regularly investigate COVID-19-related mortality and determine its direct and indirect causes.
Project description:Comparing the impact of the COVID-19 pandemic between countries or across time is difficult because the reported numbers of cases and deaths can be strongly affected by testing capacity and reporting policy. Excess mortality, defined as the increase in all-cause mortality relative to the expected mortality, is widely considered as a more objective indicator of the COVID-19 death toll. However, there has been no global, frequently updated repository of the all-cause mortality data across countries. To fill this gap, we have collected weekly, monthly, or quarterly all-cause mortality data from 103 countries and territories, openly available as the regularly updated World Mortality Dataset. We used this dataset to compute the excess mortality in each country during the COVID-19 pandemic. We found that in several worst-affected countries (Peru, Ecuador, Bolivia, Mexico) the excess mortality was above 50% of the expected annual mortality (Peru, Ecuador, Bolivia, Mexico) or above 400 excess deaths per 100,000 population (Peru, Bulgaria, North Macedonia, Serbia). At the same time, in several other countries (e.g. Australia and New Zealand) mortality during the pandemic was below the usual level, presumably due to social distancing measures decreasing the non-COVID infectious mortality. Furthermore, we found that while many countries have been reporting the COVID-19 deaths very accurately, some countries have been substantially underreporting their COVID-19 deaths (e.g. Nicaragua, Russia, Uzbekistan), by up to two orders of magnitude (Tajikistan). Our results highlight the importance of open and rapid all-cause mortality reporting for pandemic monitoring.
Project description:The impact of the COVID-19 pandemic on excess mortality from all causes in 2020 varied across and within European countries. Using data for 2015-2019, we applied Bayesian spatio-temporal models to quantify the expected weekly deaths at the regional level had the pandemic not occurred in England, Greece, Italy, Spain, and Switzerland. With around 30%, Madrid, Castile-La Mancha, Castile-Leon (Spain) and Lombardia (Italy) were the regions with the highest excess mortality. In England, Greece and Switzerland, the regions most affected were Outer London and the West Midlands (England), Eastern, Western and Central Macedonia (Greece), and Ticino (Switzerland), with 15-20% excess mortality in 2020. Our study highlights the importance of the large transportation hubs for establishing community transmission in the first stages of the pandemic. Here, we show that acting promptly to limit transmission around these hubs is essential to prevent spread to other regions and countries.
Project description:Aim To evaluate the effect of vaccination/booster administration dynamics on the reduction of excess mortality during COVID-19 infection waves in European countries. Methods We selected twenty-nine countries from the OurWorldInData project database according to their population size of more than one million and the availability of information on dominant SARS-CoV-2 variants during COVID-19 infection waves. After selection, we categorized countries according to their ″faster″ or ″slower″ vaccination rates. The first category included countries that reached 60% of vaccinated residents by October 2021 and 70% by January 2022. The second or ″slower″ category included all other countries. In the first or ″faster″ category, two groups, ″boosters faster'' and ″boosters slower″ were created. Pearson correlation analysis, linear regression, and chi-square test for categorical data were used to identify the association between vaccination rate and excess mortality. We chose time intervals corresponding to the dominance of viral variants: Wuhan, Alpha, Delta, and Omicron BA.1/2. Results The ″faster″ countries, as opposed to the ″slower″ ones, did better in protecting their residents from mortality during all periods of the SARS-CoV-2 pandemic and even before vaccination. Perhaps higher GDP per capita contributed to their better performance throughout the pandemic. During mass vaccination, when the Delta variant prevailed, the contrast in mortality rates between the ″faster″ and ″slower″ categories was strongest. The average excess mortality in the ″slower″ countries was nearly 5 times higher than in the ″faster″ countries, and the odds ratio (OR) was 4.9 (95% CI 4.4 to 5.4). Slower booster rates were associated with significantly higher mortality during periods dominated by Omicron BA.1 and BA.2, with an OR of 2.6 (CI 95%. 2.1 to 3.3). Among the European countries we analyzed, Denmark, Norway, and Ireland did best, with a pandemic mortality rate of 0.1% of the population or less. By comparison, Bulgaria, Serbia, and Russia had a much higher mortality rate of up to 1% of the population. Thus, slow vaccination and booster administration was a major factor contributing to an order of magnitude higher excess mortality in ″slower″ European countries compared to more rapidly immunized countries.
Project description:In this paper, we measure the effect of the 2020 COVID-19 pandemic wave at the national and subnational levels in selected Latin American countries that were most affected: Brazil, Chile, Ecuador, Guatemala, Mexico, and Peru. We used publicly available monthly mortality data to measure the impacts of the pandemic using excess mortality for each country and its regions. We compare the mortality, at national and regional levels, in 2020 to the mortality levels of recent trends and provide estimates of the impact of mortality on life expectancy at birth. Our findings indicate that from April 2020 on, mortality exceeded its usual monthly levels in multiple areas of each country. In Mexico and Peru, excess mortality was spreading through many areas by the end of the second half of 2020. To a lesser extent, we observed a similar pattern in Brazil, Chile, and Ecuador. We also found that as the pandemic progressed, excess mortality became more visible in areas with poorer socioeconomic and sanitary conditions. This excess mortality has reduced life expectancy across these countries by 2-10 years. Despite the lack of reliable information on COVID-19 mortality, excess mortality is a useful indicator for measuring the effects of the coronavirus pandemic, especially in the context of Latin American countries, where there is still a lack of good information on causes of death in their vital registration systems.Supplementary informationThe online version contains supplementary material available at 10.1186/s41118-021-00139-1.