Unknown

Dataset Information

0

ECM deposition is driven by caveolin-1-dependent regulation of exosomal biogenesis and cargo sorting.


ABSTRACT: The composition and physical properties of the extracellular matrix (ECM) critically influence tumor progression, but the molecular mechanisms underlying ECM layering are poorly understood. Tumor-stroma interaction critically depends on cell communication mediated by exosomes, small vesicles generated within multivesicular bodies (MVBs). We show that caveolin-1 (Cav1) centrally regulates exosome biogenesis and exosomal protein cargo sorting through the control of cholesterol content at the endosomal compartment/MVBs. Quantitative proteomics profiling revealed that Cav1 is required for exosomal sorting of ECM protein cargo subsets, including Tenascin-C (TnC), and for fibroblast-derived exosomes to efficiently deposit ECM and promote tumor invasion. Cav1-driven exosomal ECM deposition not only promotes local stromal remodeling but also the generation of distant ECM-enriched stromal niches in vivo. Cav1 acts as a cholesterol rheostat in MVBs, determining sorting of ECM components into specific exosome pools and thus ECM deposition. This supports a model by which Cav1 is a central regulatory hub for tumor-stroma interactions through a novel exosome-dependent ECM deposition mechanism.

SUBMITTER: Albacete-Albacete L 

PROVIDER: S-EPMC7551399 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2020-10-07 | MTBLS1977 | MetaboLights
2020-10-07 | MTBLS1969 | MetaboLights
| S-EPMC8031663 | biostudies-literature
| S-EPMC3718112 | biostudies-literature
| S-EPMC10956366 | biostudies-literature
| S-EPMC3628520 | biostudies-literature
| S-EPMC3364180 | biostudies-literature
| S-EPMC10330318 | biostudies-literature
| S-EPMC4862333 | biostudies-literature
| S-EPMC5519196 | biostudies-literature