Unknown

Dataset Information

0

Regulation of JAM2 Expression in the Lungs of Streptozotocin-Induced Diabetic Mice and Human Pluripotent Stem Cell-Derived Alveolar Organoids.


ABSTRACT: Hyperglycemia is a causative factor in the pathogenesis of respiratory diseases, known to induce fibrosis and inflammation in the lung. However, little attention has been paid to genes related to hyperglycemic-induced lung alterations and stem cell applications for therapeutic use. In this study, our microarray data revealed significantly increased levels of junctional adhesion molecule 2 (JAM2) in the high glucose (HG)-induced transcriptional profile in human perivascular cells (hPVCs). The elevated level of JAM2 in HG-treated hPVCs was transcriptionally and epigenetically reversible when HG treatment was removed. We further investigated the expression of JAM2 using in vivo and in vitro hyperglycemic models. Our results showed significant upregulation of JAM2 in the lungs of streptozotocin (STZ)-induced diabetic mice, which was greatly suppressed by the administration of conditioned medium obtained from human mesenchymal stem cell cultures. Furthermore, JAM2 was found to be significantly upregulated in human pluripotent stem cell-derived multicellular alveolar organoids by exposure to HG. Our results suggest that JAM2 may play an important role in STZ-induced lung alterations and could be a potential indicator for predicting the therapeutic effects of stem cells and drugs in diabetic lung complications.

SUBMITTER: Rasaei R 

PROVIDER: S-EPMC7555027 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Regulation of JAM2 Expression in the Lungs of Streptozotocin-Induced Diabetic Mice and Human Pluripotent Stem Cell-Derived Alveolar Organoids.

Rasaei Roya R   Kim Eunbi E   Kim Ji-Young JY   Na Sunghun S   Kim Jung-Hyun JH   Heo Jinbeom J   Shin Dong-Myung DM   Choi Sun Shim SS   Hong Seok-Ho SH  

Biomedicines 20200911 9


Hyperglycemia is a causative factor in the pathogenesis of respiratory diseases, known to induce fibrosis and inflammation in the lung. However, little attention has been paid to genes related to hyperglycemic-induced lung alterations and stem cell applications for therapeutic use. In this study, our microarray data revealed significantly increased levels of junctional adhesion molecule 2 (JAM2) in the high glucose (HG)-induced transcriptional profile in human perivascular cells (hPVCs). The ele  ...[more]

Similar Datasets

| S-EPMC8693665 | biostudies-literature
| S-EPMC7961057 | biostudies-literature
| S-EPMC7576965 | biostudies-literature
| S-EPMC6409438 | biostudies-literature
| S-EPMC9409017 | biostudies-literature
| S-EPMC8684607 | biostudies-literature
| S-EPMC6687537 | biostudies-literature
| S-EPMC7079496 | biostudies-literature
| S-EPMC5806130 | biostudies-literature
| S-EPMC10460991 | biostudies-literature