Unknown

Dataset Information

0

Potent Small-Molecule Inhibitors Targeting Acetylated Microtubules as Anticancer Agents Against Triple-Negative Breast Cancer.


ABSTRACT: Microtubules are one of the major targets for anticancer drugs because of their role in cell proliferation and migration. However, as anticancer drugs targeting microtubules have side effects, including the death of normal cells, it is necessary to develop anticancer agents that can target microtubules by specifically acting on cancer cells only. In this study, we identified chemicals that can act as anticancer agents by specifically binding to acetylated microtubules, which are predominant in triple-negative breast cancer (TNBC). The chemical compounds disrupted acetylated microtubule lattices by interfering with microtubule access to alpha-tubulin acetyltransferase 1 (?TAT1), a major acetyltransferase of microtubules, resulting in the increased apoptotic cell death of MDA-MB-231 cells (a TNBC cell line) compared with other cells, such as MCF-10A and MCF-7, which lack microtubule acetylation. Moreover, mouse xenograft experiments showed that treatment with the chemical compounds markedly reduced tumor growth progression. Taken together, the newly identified chemical compounds can be selective for acetylated microtubules and act as potential therapeutic agents against microtubule acetylation enrichment in TNBC.

SUBMITTER: Kwon A 

PROVIDER: S-EPMC7555225 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Potent Small-Molecule Inhibitors Targeting Acetylated Microtubules as Anticancer Agents Against Triple-Negative Breast Cancer.

Kwon Ahreum A   Lee Gwi Bin GB   Park Taein T   Lee Jung Hoon JH   Ko Panseon P   You Eunae E   Ahn Jin Hee JH   Eom Soo Hyun SH   Rhee Sangmyung S   Song Woo Keun WK  

Biomedicines 20200909 9


Microtubules are one of the major targets for anticancer drugs because of their role in cell proliferation and migration. However, as anticancer drugs targeting microtubules have side effects, including the death of normal cells, it is necessary to develop anticancer agents that can target microtubules by specifically acting on cancer cells only. In this study, we identified chemicals that can act as anticancer agents by specifically binding to acetylated microtubules, which are predominant in t  ...[more]

Similar Datasets

| S-EPMC3651759 | biostudies-literature
| S-EPMC6262455 | biostudies-literature
| S-EPMC9559471 | biostudies-literature
| S-EPMC10840364 | biostudies-literature
| S-EPMC4914652 | biostudies-literature
| S-EPMC8369186 | biostudies-literature
| S-EPMC4184880 | biostudies-literature
| S-EPMC7038226 | biostudies-literature
| S-EPMC6971110 | biostudies-literature
| S-EPMC7321177 | biostudies-literature