Project description:Lung transplant recipients are at high risk for herpes zoster and preventive measures are a significant unmet need. We investigated the safety and immunogenicity of two doses of a recombinant zoster vaccine (RZV) in lung transplant recipients (≥50 years). We enrolled 50 patients of which 49 received at least one vaccine dose. Anti-glycoprotein E (gE) antibody levels (n = 43) increased significantly compared to baseline (median optical density [OD] 1.96; interquartile range [IQR]: 1.17-2.89) after the first (median OD 3.41, IQR 2.54-3.81, p < .0001) and second vaccine dose (median OD 3.63, IQR 3.39-3.86, p < .0001). gE-specific polyfunctional CD4+ T cell frequencies (n = 38) also increased from baseline (median 85 per 106 CD4+ T cells; IQR: 46-180) to the first (median 128 per 106 CD4+ T cells; IQR: 82-353; p = .023) and after the second dose (median 361 per 106 CD4+ T cells; IQR: 146-848; p < .0001). Tenderness (83.0%; 95%CI: 69.2-92.4%) and redness (31.9%; 95%CI: 19.1-47.1%) at injection site were common. One rejection episode within 3 weeks of vaccination was observed. This is the first study demonstrating that RZV was safe and elicited significant humoral and cell-mediated immunity in lung transplant recipients. RZV is a new option for the prevention of shingles in this population.
Project description:BackgroundHerpes zoster (HZ) infection of hematopoietic stem cell transplant (HSCT) patients is of clinical concern. Vaccination could help restore immunity to varicella zoster virus (VZV); however, temporal changes in immunogenicity and safety of live HZ vaccines after HSCT is still unclear. The aim of this study was to elucidate the temporal immunogenicity and safety of the HZ vaccine according to time since HSCT and to determine optimal timing of vaccination.MethodsLive HZ vaccine was administered to patients 2-5 years or > 5 years post-HSCT. Control groups comprised patients with a hematologic malignancy who received cytotoxic chemotherapy and healthy volunteers. Humoral and cellular immunogenicity were measured using a glycoprotein enzyme-linked immunosorbent assay (gpELISA) and an interferon-γ (IFN-γ) enzyme-linked immunospot (ELISPOT) assay. Vaccine-related adverse events were also monitored.ResultsFifty-six patients with hematologic malignancy (41 in the HSCT group and 15 in the chemotherapy group) along with 30 healthy volunteers were enrolled. The geometric mean fold rises (GMFRs) in humoral immune responses of the 2-5 year and > 5 year HSCT groups, and the healthy volunteer group, were comparable and significantly higher than that of the chemotherapy group (3.15, 95% CI [1.96-5.07] vs 5.05, 95% CI [2.50-10.20] vs 2.97, 95% CI [2.30-3.83] vs 1.42, 95% CI [1.08-1.86]). The GMFR of cellular immune responses was highest in the HSCT 2-5 year group and lowest in the chemotherapy group. No subject suffered clinically significant adverse events or reactivation of VZV within the follow-up period.ConclusionOur findings demonstrate that a live HZ vaccine is immunogenic and safe when administered 2 years post-HSCT.
Project description:BackgroundThe incidence of herpes zoster is up to 9 times higher in immunosuppressed solid organ transplant recipients than in the general population. We investigated the immunogenicity and safety of an adjuvanted recombinant zoster vaccine (RZV) in renal transplant (RT) recipients ≥18 years of age receiving daily immunosuppressive therapy.MethodsIn this phase 3, randomized (1:1), observer-blind, multicenter trial, RT recipients were enrolled and received 2 doses of RZV or placebo 1-2 months (M) apart 4-18M posttransplant. Anti-glycoprotein E (gE) antibody concentrations, gE-specific CD4 T-cell frequencies, and vaccine response rates were assessed at 1M post-dose 1, and 1M and 12M post-dose 2. Solicited and unsolicited adverse events (AEs) were recorded for 7 and 30 days after each dose, respectively. Solicited general symptoms and unsolicited AEs were also collected 7 days before first vaccination. Serious AEs (including biopsy-proven allograft rejections) and potential immune-mediated diseases (pIMDs) were recorded up to 12M post-dose 2.ResultsTwo hundred sixty-four participants (RZV: 132; placebo: 132) were enrolled between March 2014 and April 2017. gE-specific humoral and cell-mediated immune responses were higher in RZV than placebo recipients across postvaccination time points and persisted above prevaccination baseline 12M post-dose 2. Local AEs were reported more frequently by RZV than placebo recipients. Overall occurrences of renal function changes, rejections, unsolicited AEs, serious AEs, and pIMDs were similar between groups.ConclusionsRZV was immunogenic in chronically immunosuppressed RT recipients. Immunogenicity persisted through 12M postvaccination. No safety concerns arose.Clinical trials registrationNCT02058589.
Project description:Recombinant herpes zoster (HZ) vaccines may be an alternative to the live-attenuated HZ vaccine for immunocompromised individuals. This was a phase 1/2, randomized, observer-blind, placebo-controlled study in adults with multiple myeloma, non-Hodgkin lymphoma (B- or T-cell), Hodgkin lymphoma, or acute myeloid leukemia who had undergone autologous hematopoietic stem-cell transplant 50 to 70 days earlier. Subjects (N = 121) were randomized 1:1:1:1 to receive (at months 0, 1, 3) three doses of 50 ?g varicella-zoster virus glycoprotein E (gE) adjuvanted with AS01B, 3 doses of gE adjuvanted with AS01E, 1 dose of saline followed by 2 doses of gE/AS01B, or 3 doses of saline. One month after the last dose (6 months after transplant), frequencies of CD4(+) T cells expressing ?2 activation markers after induction with gE and anti-gE antibody concentrations were higher with all gE/AS01 regimens than with saline. Both responses persisted up to 1 year in subjects vaccinated with gE/AS01. Immune responses were higher in the gE/AS01B 3-dose group than in the gE/AS01B 2-dose group but not higher than in the gE/AS01E 3-dose group. One serious adverse event (pneumonia) was considered vaccine related. Both formulations and both schedules were immunogenic and well tolerated in this population. This study was registered at www.clinicaltrials.gov as #NCT00920218.
Project description:Immunocompromised individuals, particularly autologous hematopoietic stem cell transplant (auHSCT) recipients, are at high risk for herpes zoster (HZ). We provide an in-depth description of humoral and cell-mediated immune (CMI) responses by age (protocol-defined) or underlying disease (post-hoc) as well as efficacy by underlying disease (post-hoc) of the adjuvanted recombinant zoster vaccine (RZV) in a randomized observer-blind phase III trial (ZOE-HSCT, NCT01610414). 1846 adult auHSCT recipients were randomized to receive a first dose of either RZV or placebo 50-70 days post-auHSCT, followed by the second dose at 1-2 months (M) later. In cohorts of 114-1721 participants, at 1 M post-second vaccine dose: Anti-gE antibody geometric mean concentrations (GMCs) and median gE-specific CD4[2+] T-cell frequencies (CD4 T cells expressing ≥2 of four assessed activation markers) were similar between 18-49 and ≥50-year-olds. Despite lower anti-gE antibody GMCs in non-Hodgkin B-cell lymphoma (NHBCL) patients, CD4[2+] T-cell frequencies were similar between NHBCL and other underlying diseases. The proportion of polyfunctional CD4 T cells increased over time, accounting for 79.6% of gE-specific CD4 T cells at 24 M post-dose two. Vaccine efficacy against HZ ranged between 42.5% and 82.5% across underlying diseases and was statistically significant in NHBCL and multiple myeloma patients. In conclusion, two RZV doses administered early post-auHSCT induced robust, persistent, and polyfunctional gE-specific immune responses. Efficacy against HZ was also high in NHBCL patients despite the lower humoral response.
Project description:BackgroundSome vaccines elicit nonspecific immune responses that may protect against heterologous infections. We evaluated the association between recombinant adjuvanted zoster vaccine (RZV) and coronavirus disease 2019 (COVID-19) outcomes at Kaiser Permanente Southern California.MethodsIn a cohort design, adults aged ≥50 years who received ≥1 RZV dose before 1 March 2020 were matched 1:2 to unvaccinated individuals and followed until 31 December 2020. Adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for COVID-19 outcomes were estimated using Cox proportional hazards regression. In a test-negative design, cases had a positive severe acute respiratory syndrome coronavirus 2 test and controls had only negative tests, during 1 March-31 December 2020. Adjusted odds ratios (aORs) and 95% CIs for RZV receipt were estimated using logistic regression.ResultsIn the cohort design, 149 244 RZV recipients were matched to 298 488 unvaccinated individuals. The aHRs for COVID-19 diagnosis and hospitalization were 0.84 (95% CI, .81-.87) and 0.68 (95% CI, .64-.74), respectively. In the test-negative design, 8.4% of 75 726 test-positive cases and 13.1% of 340 898 test-negative controls had received ≥1 RZV dose (aOR, 0.84 [95% CI, .81-.86]).ConclusionsRZV vaccination was associated with a 16% lower risk of COVID-19 diagnosis and 32% lower risk of hospitalization. Further study of vaccine-induced nonspecific immunity for potential attenuation of future pandemics is warranted.
Project description:A diligent, systematic, regular review of aggregate safety data is essential, particularly early after vaccine introduction, as this is when safety signals not identified during clinical development may emerge. In October 2017, the US Centers for Disease Control and Prevention Advisory Committee on Immunization Practices recommended the adjuvanted recombinant zoster vaccine (RZV; Shingrix, GSK) as the preferred vaccine for preventing herpes zoster (HZ) and related complications in immunocompetent adults aged ≥ 50 years. Subsequently, GSK experienced an unprecedented high demand for RZV. In this methodology paper, we summarize the enhanced measures undertaken to assess RZV safety during its early post-marketing experience in the USA, Canada and Germany. In addition to the routine signal-detection methods already in place for all vaccines, GSK established tailored and enhanced safety monitoring for RZV based on aggregate data of spontaneous reports and manufacturing data. Proactive, near real-time detection and evaluation of signals was a key objective. A dedicated in-house signal-detection tool customized for RZV was employed on a weekly (rather than the routine monthly) basis, allowing for a centralized, more frequent review of data on a single web-based platform. We also identified the background incidence rates of preselected medical events of interest in the first countries to introduce RZV (USA, Canada and Germany) to perform observed-to-expected analyses. This approach may offer a solution to the challenges associated with the assessment and monitoring of vaccine safety in an efficient and timely manner in the context of high vaccine uptake.
Project description:Background:In phase 3 trials, inactivated varicella zoster virus (VZV) vaccine (ZVIN) was well tolerated and efficacious against herpes zoster (HZ) in autologous hematopoietic stem cell transplant (auto-HSCT) recipients and patients with solid tumor malignancies receiving chemotherapy (STMc) but did not reduce HZ incidence in patients with hematologic malignancies (HMs). Here, we describe ZVIN immunogenicity from these studies. Methods:Patients were randomized to ZVIN or placebo (4 doses). Immunogenicity was assessed by glycoprotein enzyme-linked immunosorbent assay (gpELISA) and VZV interferon (IFN)-? enzyme-linked immunospot (ELISPOT) assay in patients receiving all 4 doses without developing HZ at the time of blood sampling. Results:Estimated geometric mean fold rise ratios (ZVIN/placebo) by gpELISA and IFN-y ELISPOT ~28 days post-dose 4 were 2.02 (95% confidence interval [CI], 1.53-2.67) and 5.41 (95% CI, 3.60-8.12) in auto-HSCT recipients; 1.88 (95% CI, 1.79-1.98) and 2.10 (95% CI, 1.69-2.62) in patients with STMc; and not assessed and 2.35 (95% CI, 1.81-3.05) in patients with HM. Conclusions:ZVIN immunogenicity was directionally consistent with clinical efficacy in auto-HSCT recipients and patients with STMc even though HZ protection and VZV immunity were not statistically correlated. Despite a lack of clinical efficacy in patients with HM, ZVIN immunogenicity was observed in this population. Immunological results did not predict vaccine efficacy in these 3 populations. Clinical trial registration:NCT01229267, NCT01254630.
Project description:BackgroundThe adjuvanted recombinant zoster vaccine (RZV) is highly immunogenic and efficacious in adults ≥50 years of age. We evaluated (1) long-term immunogenicity of an initial 2-dose RZV schedule, by following up adults vaccinated at ≥60 years of age and by modeling, and (2) immunogenicity of 2 additional doses administered 10 years after initial vaccination.MethodsPersistence of humoral and cell-mediated immune (CMI) responses to 2 initial RZV doses was assessed through 10 years after initial vaccination, and modeled through 20 years using a Piecewise, Power law and Fraser model. The immunogenicity and safety of 2 additional RZV doses were also evaluated.ResultsSeventy adults were enrolled. Ten years after initial vaccination, humoral and CMI responses were approximately 6-fold and 3.5-fold, respectively, above those before the initial vaccination levels. Predicted immune persistence through 20 years after initial vaccination was similar across the 3 models. Sixty-two participants (mean age [standard deviation], 82.6 [4.4] years) received ≥1 additional RZV dose. Strong anamnestic humoral and CMI responses were elicited by 1 additional dose, without further increases after a second additional dose.ConclusionsImmune responses to an initial 2-dose RZV course persisted for many years in older adults. Strong anamnestic immune responses can be induced by additional dosing 10 years after the initial 2-dose course.Clinical trials registrationNCT02735915.