Unknown

Dataset Information

0

ORR in Non-Aqueous Solvent for Li-Air Batteries: The Influence of Doped MnO2-Nanoelectrocatalyst.


ABSTRACT: One of the major drawbacks in Lithium-air batteries is the sluggish kinetics of the oxygen reduction reaction (ORR). In this context, better performances can be achieved by adopting a suitable electrocatalyst, such as MnO2. Herein, we tried to design nano-MnO2 tuning the final ORR electroactivity by tailoring the doping agent (Co or Fe) and its content (2% or 5% molar ratios). Staircase-linear sweep voltammetries (S-LSV) were performed to investigate the nanopowders electrocatalytic behavior in organic solvent (propylene carbonate, PC and 0.15 M LiNO3 as electrolyte). Two percent Co-doped MnO2 revealed to be the best-performing sample in terms of ORR onset shift (of ~130 mV with respect to bare glassy carbon electrode), due to its great lattice defectivity and presence of the highly electroactive ? polymorph (by X-ray diffraction analyses, XRPD and infrared spectroscopy, FTIR). 5% Co together with 2% Fe could also be promising, since they exhibited fewer diffusive limitations, mainly due to their peculiar pore distribution (by Brunauer-Emmett-Teller, BET) that disfavored the cathode clogging. Particularly, a too-high Fe content led to iron segregation (by energy dispersive X-ray spectroscopy, EDX, X-ray photoelectron spectroscopy, XPS and FTIR) provoking a decrease of the electroactive sites, with negative consequences for the ORR.

SUBMITTER: Pargoletti E 

PROVIDER: S-EPMC7558571 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

ORR in Non-Aqueous Solvent for Li-Air Batteries: The Influence of Doped MnO<sub>2</sub>-Nanoelectrocatalyst.

Pargoletti Eleonora E   Salvi Annalisa A   Giordana Alessia A   Cerrato Giuseppina G   Longhi Mariangela M   Minguzzi Alessandro A   Cappelletti Giuseppe G   Vertova Alberto A  

Nanomaterials (Basel, Switzerland) 20200901 9


One of the major drawbacks in Lithium-air batteries is the sluggish kinetics of the oxygen reduction reaction (ORR). In this context, better performances can be achieved by adopting a suitable electrocatalyst, such as MnO<sub>2</sub>. Herein, we tried to design nano-MnO<sub>2</sub> tuning the final ORR electroactivity by tailoring the doping agent (Co or Fe) and its content (2% or 5% molar ratios). Staircase-linear sweep voltammetries (S-LSV) were performed to investigate the nanopowders electro  ...[more]

Similar Datasets

| S-EPMC8179661 | biostudies-literature
| S-EPMC7496518 | biostudies-literature
| S-EPMC9849263 | biostudies-literature
| S-EPMC8905958 | biostudies-literature
| S-EPMC3672879 | biostudies-other
| S-EPMC4677382 | biostudies-literature
| S-EPMC7770869 | biostudies-literature
| S-EPMC5765460 | biostudies-literature
| S-EPMC8589951 | biostudies-literature
| S-EPMC9419821 | biostudies-literature