Unknown

Dataset Information

0

Mycosynthesis of ZnO Nanoparticles Using Trichoderma spp. Isolated from Rhizosphere Soils and Its Synergistic Antibacterial Effect against Xanthomonas oryzae pv. oryzae.


ABSTRACT: The Plant Growth Promoting Fungi (PGPF) is used as a source of biofertilizers due to their production of secondary metabolites and beneficial effects on plants. The present work is focused on the co-cultivation of Trichoderma spp. (T. harzianum (PGT4), T. reesei (PGT5) and T. reesei (PGT13)) and the production of secondary metabolites from mono and co-culture and mycosynthesis of zinc oxide nanoparticles (ZnO NPs), which were characterized by a UV visible spectrophotometer, Powder X-ray Diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDAX) and Transmission Electron Microscope (TEM) and Selected Area (Electron) Diffraction (SAED) patterns. The fungal secondary metabolite crude was extracted from the mono and co-culture of Trichoderma spp. And were analyzed by GC-MS, which was further subjected for antibacterial activity against Xanthomonas oryzae pv. Oryzae, the causative organism for Bacterial Leaf Blight (BLB) in rice. Our results showed that the maximum zone of inhibition was recorded from the co-culture of Trichoderma spp. rather than mono cultures, which indicates that co-cultivation of beneficial fungi can stimulate the synthesis of novel secondary metabolites better than in monocultures. ZnO NPs were synthesized from fungal secondary metabolites of mono cultures of Trichoderma harzianum (PGT4), Trichoderma reesei (PGT5), Trichoderma reesei (PGT13) and co-culture (PGT4 + PGT5 + PGT13). These ZnO NPs were checked for antibacterial activity against Xoo, which was found to be of a dose-dependent manner. In summary, the biosynthesized ZnO NPs and secondary metabolites from co-culture of Trichoderma spp. are ecofriendly and can be used as an alternative for chemical fertilizers in agriculture.

SUBMITTER: Shobha B 

PROVIDER: S-EPMC7558757 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mycosynthesis of ZnO Nanoparticles Using <i>Trichoderma</i> spp. Isolated from Rhizosphere Soils and Its Synergistic Antibacterial Effect against <i>Xanthomonas oryzae</i> pv. <i>oryzae</i>.

Shobha Balagangadharaswamy B   Lakshmeesha Thimappa Ramachandrappa TR   Ansari Mohammad Azam MA   Almatroudi Ahmad A   Alzohairy Mohammad A MA   Basavaraju Sumanth S   Alurappa Ramesha R   Niranjana Siddapura Ramachandrappa SR   Chowdappa Srinivas S  

Journal of fungi (Basel, Switzerland) 20200920 3


The Plant Growth Promoting Fungi (PGPF) is used as a source of biofertilizers due to their production of secondary metabolites and beneficial effects on plants. The present work is focused on the co-cultivation of <i>Trichoderma</i> spp. (<i>T. harzianum</i> (PGT4), <i>T. reesei</i> (PGT5) and <i>T. reesei</i> (PGT13)) and the production of secondary metabolites from mono and co-culture and mycosynthesis of zinc oxide nanoparticles (ZnO NPs), which were characterized by a UV visible spectrophoto  ...[more]

Similar Datasets

| S-EPMC6637998 | biostudies-literature
2008-02-08 | GSE9658 | GEO
| S-EPMC7157550 | biostudies-literature
2010-05-26 | E-GEOD-9658 | biostudies-arrayexpress
2008-02-08 | GSE9640 | GEO
| S-EPMC10974988 | biostudies-literature
| S-EPMC6606903 | biostudies-literature
| S-EPMC3298507 | biostudies-literature
| S-EPMC6123991 | biostudies-literature
| S-EPMC7970823 | biostudies-literature