Unknown

Dataset Information

0

Elevated perfusate [Na+] increases contractile dysfunction during ischemia and reperfusion.


ABSTRACT: Recent studies revealed that relatively small changes in perfusate sodium ([Na+]o) composition significantly affect cardiac electrical conduction and stability in contraction arrested ex vivo Langendorff heart preparations before and during simulated ischemia. Additionally, [Na+]o modulates cardiomyocyte contractility via a sodium-calcium exchanger (NCX) mediated pathway. It remains unknown, however, whether modest changes to [Na+]o that promote electrophysiologic stability similarly improve mechanical function during baseline and ischemia-reperfusion conditions. The purpose of this study was to quantify cardiac mechanical function during ischemia-reperfusion with perfusates containing 145 or 155 mM Na+ in Langendorff perfused isolated rat heart preparations. Relative to 145 mM Na+, perfusion with 155 mM [Na+]o decreased the amplitude of left-ventricular developed pressure (LVDP) at baseline and accelerated the onset of ischemic contracture. Inhibiting NCX with SEA0400 abolished LVDP depression caused by increasing [Na+]o at baseline and reduced the time to peak ischemic contracture. Ischemia-reperfusion decreased LVDP in all hearts with return of intrinsic activity, and reperfusion with 155 mM [Na+]o further depressed mechanical function. In summary, elevating [Na+]o by as little as 10 mM can significantly modulate mechanical function under baseline conditions, as well as during ischemia and reperfusion. Importantly, clinical use of Normal Saline, which contains 155 mM [Na+]o, with cardiac ischemia may require further investigation.

SUBMITTER: King DR 

PROVIDER: S-EPMC7560862 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Elevated perfusate [Na<sup>+</sup>] increases contractile dysfunction during ischemia and reperfusion.

King D Ryan DR   Padget Rachel L RL   Perry Justin J   Hoeker Gregory G   Smyth James W JW   Brown David A DA   Poelzing Steven S  

Scientific reports 20201014 1


Recent studies revealed that relatively small changes in perfusate sodium ([Na<sup>+</sup>]<sub>o</sub>) composition significantly affect cardiac electrical conduction and stability in contraction arrested ex vivo Langendorff heart preparations before and during simulated ischemia. Additionally, [Na<sup>+</sup>]<sub>o</sub> modulates cardiomyocyte contractility via a sodium-calcium exchanger (NCX) mediated pathway. It remains unknown, however, whether modest changes to [Na<sup>+</sup>]<sub>o</su  ...[more]

Similar Datasets

| S-EPMC6114292 | biostudies-literature
| S-EPMC6242757 | biostudies-literature
| S-EPMC2953580 | biostudies-literature
| S-EPMC3244491 | biostudies-literature
| S-EPMC5156406 | biostudies-literature
| S-EPMC4720186 | biostudies-literature
| S-EPMC6208686 | biostudies-literature
| S-EPMC3158807 | biostudies-literature
| S-EPMC3769136 | biostudies-literature
| S-EPMC6595001 | biostudies-literature