A Novel Rhoptry Protein as Candidate Vaccine against Eimeria tenella Infection.
Ontology highlight
ABSTRACT: Eimeria tenella (E. tenella) is a highly pathogenic and prevalent species of Eimeria that infects chickens, and it causes a considerable disease burden worldwide. The secreted proteins and surface antigens of E. tenella at the sporozoite stage play an essential role in the host-parasite interaction, which involves attachment and invasion, and these interactions are considered vaccine candidates based on the strategy of cutting off the invasion pathway to interrupt infection. We selected two highly expressed surface antigens (SAGs; Et-SAG13 and Et-SAG) and two highly expressed secreted antigens (rhoptry kinases Eten5-A, Et-ROPK-Eten5-A and dense granule 12, Et-GRA12) at the sporozoite stage. Et-ROPK-Eten5-A and Et-GRA12 were two unexplored proteins. Et-ROPK-Eten5-A was an E. tenella-specific rhoptry (ROP) protein and distributed in the apical pole of sporozoites and merozoites. Et-GRA12 was scattered in granular form at the sporozoite stage. To evaluate the potential of rEt-ROPK-Eten5-A, rEt-GRA12, rEt-SAG13 and rEt-SAG proteins as a coccidiosis vaccine, the protective efficacy was examined based on survival rate, lesion score, body weight gain, relative body weight gain and oocyst output. The survival rate was significantly improved in rEt-ROPK-Eten5-A (100%) and rEt-GRA12 (100%) immune chickens compared to the challenged control group (40%). The average body weight gains of rEt-ROPK-Eten5-A, rEt-GRA12, rEt-SAG13 and rEt-SAG immunized chickens were significantly higher than those of unimmunized chickens. The mean lesion score and oocyst output of the rEt-ROPK-Eten5-A immunized chickens were significantly reduced compared to unimmunized challenged chickens. These results suggest that the rEt-ROPK-Eten5-A protein effectively triggered protection against E. tenella in chickens and provides a useful foundation for future work developing anticoccidial vaccines.
SUBMITTER: Song X
PROVIDER: S-EPMC7565193 | biostudies-literature | 2020 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA