Unknown

Dataset Information

0

Exciton-to-trion conversion as a control mechanism for valley polarization in room-temperature monolayer WS2.


ABSTRACT: Transition metal dichalcogenide (TMD) monolayers are two-dimensional semiconductors with two valleys in their band structure that can be selectively addressed using circularly polarized light. Their photoluminescence spectrum is characterized by neutral and charged excitons (trions) that form a chemical equilibrium governed by the net charge density. Here, we use chemical doping to drive the conversion of excitons into trions in [Formula: see text] monolayers at room temperature, and study the resulting valley polarization via photoluminescence measurements under valley-selective optical excitation. We show that the doping causes the emission to become dominated by trions with a strong valley polarization associated with rapid non-radiative recombination. Simultaneously, the doping results in strongly quenched but highly valley-polarized exciton emission due to the enhanced conversion into trions. A rate equation model explains the observed valley polarization in terms of the doping-controlled exciton-trion equilibrium. Our results shed light on the important role of exciton-trion conversion on valley polarization in monolayer TMDs.

SUBMITTER: Carmiggelt JJ 

PROVIDER: S-EPMC7566459 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Exciton-to-trion conversion as a control mechanism for valley polarization in room-temperature monolayer WS<sub>2</sub>.

Carmiggelt Joris J JJ   Borst Michael M   van der Sar Toeno T  

Scientific reports 20201015 1


Transition metal dichalcogenide (TMD) monolayers are two-dimensional semiconductors with two valleys in their band structure that can be selectively addressed using circularly polarized light. Their photoluminescence spectrum is characterized by neutral and charged excitons (trions) that form a chemical equilibrium governed by the net charge density. Here, we use chemical doping to drive the conversion of excitons into trions in [Formula: see text] monolayers at room temperature, and study the r  ...[more]

Similar Datasets

| S-EPMC9283389 | biostudies-literature
| S-EPMC8368091 | biostudies-literature
| S-EPMC10500002 | biostudies-literature
| S-EPMC5095560 | biostudies-literature
| S-EPMC5600293 | biostudies-literature
| S-EPMC8569157 | biostudies-literature
| S-EPMC4363839 | biostudies-literature
| S-EPMC7611190 | biostudies-literature
| S-EPMC6744439 | biostudies-literature
| S-EPMC4700440 | biostudies-literature