Unknown

Dataset Information

0

Anti-Inflammatory Activity and ROS Regulation Effect of Sinapaldehyde in LPS-Stimulated RAW 264.7 Macrophages.


ABSTRACT: We evaluated the anti-inflammatory effects of SNAH in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages by performing nitric oxide (NO) assays, cytokine enzyme-linked immunosorbent assays, Western blotting, and real-time reverse transcription-polymerase chain reaction analysis. SNAH inhibited the production of NO (nitric oxide), reactive oxygen species (ROS), tumor necrosis factor (TNF)-?, and interleukin (IL)-6. Additionally, 100 ?M SNAH significantly inhibited total NO and ROS inhibitory activity by 93% (p < 0.001) and 34% (p < 0.05), respectively. Protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) stimulated by LPS were also decreased by SNAH. Moreover, SNAH significantly (p < 0.001) downregulated the TNF-?, IL-6, and iNOS mRNA expression upon LPS stimulation. In addition, 3-100 µM SNAH was not cytotoxic. Docking simulations and enzyme inhibitory assays with COX-2 revealed binding scores of -6.4 kcal/mol (IC50 = 47.8 ?M) with SNAH compared to -11.1 kcal/mol (IC50 = 0.45 ?M) with celecoxib, a known selective COX-2 inhibitor. Our results demonstrate that SNAH exerts anti-inflammatory effects via suppression of ROS and NO by COX-2 inhibition. Thus, SNAH may be useful as a pharmacological agent for treating inflammation-related diseases.

SUBMITTER: Baek SH 

PROVIDER: S-EPMC7570554 | biostudies-literature | 2020 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Anti-Inflammatory Activity and ROS Regulation Effect of Sinapaldehyde in LPS-Stimulated RAW 264.7 Macrophages.

Baek Seung-Hwa SH   Park Tamina T   Kang Myung-Gyun MG   Park Daeui D  

Molecules (Basel, Switzerland) 20200907 18


We evaluated the anti-inflammatory effects of SNAH in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages by performing nitric oxide (NO) assays, cytokine enzyme-linked immunosorbent assays, Western blotting, and real-time reverse transcription-polymerase chain reaction analysis. SNAH inhibited the production of NO (nitric oxide), reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, and interleukin (IL)-6. Additionally, 100 μM SNAH significantly inhibited total NO and ROS inhibito  ...[more]

Similar Datasets

| S-EPMC8320646 | biostudies-literature
| S-EPMC6907817 | biostudies-literature
| S-EPMC7439783 | biostudies-literature
| S-EPMC8348635 | biostudies-literature
| S-EPMC6033069 | biostudies-literature
| S-EPMC5907526 | biostudies-literature
| S-EPMC5855679 | biostudies-literature
| S-EPMC5662831 | biostudies-literature
| S-EPMC7886191 | biostudies-literature
| S-EPMC5977217 | biostudies-literature