Unknown

Dataset Information

0

Prediction of genome-wide effects of single nucleotide variants on transcription factor binding.


ABSTRACT: Single nucleotide variants (SNVs) located in transcriptional regulatory regions can result in gene expression changes that lead to adaptive or detrimental phenotypic outcomes. Here, we predict gain or loss of binding sites for 741 transcription factors (TFs) across the human genome. We calculated 'gainability' and 'disruptability' scores for each TF that represent the likelihood of binding sites being created or disrupted, respectively. We found that functional cis-eQTL SNVs are more likely to alter TF binding sites than rare SNVs in the human population. In addition, we show that cancer somatic mutations have different effects on TF binding sites from different TF families on a cancer-type basis. Finally, we discuss the relationship between these results and cancer mutational signatures. Altogether, we provide a blueprint to study the impact of SNVs derived from genetic variation or disease association on TF binding to gene regulatory regions.

SUBMITTER: Carrasco Pro S 

PROVIDER: S-EPMC7572467 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Prediction of genome-wide effects of single nucleotide variants on transcription factor binding.

Carrasco Pro Sebastian S   Bulekova Katia K   Gregor Brian B   Labadorf Adam A   Fuxman Bass Juan Ignacio JI  

Scientific reports 20201019 1


Single nucleotide variants (SNVs) located in transcriptional regulatory regions can result in gene expression changes that lead to adaptive or detrimental phenotypic outcomes. Here, we predict gain or loss of binding sites for 741 transcription factors (TFs) across the human genome. We calculated 'gainability' and 'disruptability' scores for each TF that represent the likelihood of binding sites being created or disrupted, respectively. We found that functional cis-eQTL SNVs are more likely to a  ...[more]

Similar Datasets

| S-EPMC5137422 | biostudies-literature
| S-EPMC2922897 | biostudies-other
| S-EPMC2847719 | biostudies-literature
| S-EPMC3891310 | biostudies-literature
| S-EPMC6202062 | biostudies-literature
| S-EPMC2896541 | biostudies-literature
| S-EPMC5702214 | biostudies-literature
| S-EPMC4907338 | biostudies-literature
| S-EPMC7613001 | biostudies-literature
| S-EPMC3848595 | biostudies-literature