Topographic signatures of global object perception in human visual cortex.
Ontology highlight
ABSTRACT: Our visual system readily groups dynamic fragmented input into global objects. How the brain represents global object perception remains however unclear. To address this question, we recorded brain responses using functional magnetic resonance imaging whilst observers viewed a dynamic bistable stimulus that could either be perceived globally (i.e., as a grouped and coherently moving shape) or locally (i.e., as ungrouped and incoherently moving elements). We further estimated population receptive fields and used these to back-project the brain activity measured during stimulus perception into visual space via a searchlight procedure. Global perception resulted in universal suppression of responses in lower visual cortex accompanied by wide-spread enhancement in higher object-sensitive cortex. However, follow-up experiments indicated that higher object-sensitive cortex is suppressed if global perception lacks shape grouping, and that grouping-related suppression can be diffusely confined to stimulated sites and accompanied by background enhancement once stimulus size is reduced. These results speak to a non-generic involvement of higher object-sensitive cortex in perceptual grouping and point to an enhancement-suppression mechanism mediating the perception of figure and ground.
SUBMITTER: Stoll S
PROVIDER: S-EPMC7573540 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA