Unknown

Dataset Information

0

Catch and Anchor Approach To Combat Both Toxicity and Longevity of Botulinum Toxin A.


ABSTRACT: Botulinum neurotoxins have remarkable persistence (∼weeks to months in cells), outlasting the small-molecule inhibitors designed to target them. To address this disconnect, inhibitors bearing two pharmacophores-a zinc binding group and a Cys-reactive warhead-were designed to leverage both affinity and reactivity. A series of first-generation bifunctional inhibitors was achieved through structure-based inhibitor design. Through X-ray crystallography, engagement of both the catalytic Zn2+ and Cys165 was confirmed. A second-generation series improved on affinity by incorporating known reversible inhibitor pharmacophores; the mechanism was confirmed by exhaustive dialysis, mass spectrometry, and in vitro evaluation against the C165S mutant. Finally, a third-generation inhibitor was shown to have good cellular activity and low toxicity. In addition to our findings, an alternative method of modeling time-dependent inhibition that simplifies assay setup and allows comparison of inhibition models is discussed.

SUBMITTER: Lin L 

PROVIDER: S-EPMC7581224 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3880648 | biostudies-literature
| S-EPMC4978960 | biostudies-literature
| S-EPMC6168325 | biostudies-literature
| S-EPMC3057784 | biostudies-literature
| S-EPMC6586173 | biostudies-literature
| S-EPMC6464099 | biostudies-literature
| S-EPMC6353364 | biostudies-literature
| S-EPMC9592073 | biostudies-literature
| S-EPMC10012406 | biostudies-literature
| S-EPMC5980650 | biostudies-other