Unknown

Dataset Information

0

Primary and secondary motoneurons use different calcium channel types to control escape and swimming behaviors in zebrafish.


ABSTRACT: The escape response and rhythmic swimming in zebrafish are distinct behaviors mediated by two functionally distinct motoneuron (Mn) types. The primary (1°Mn) type depresses and has a large quantal content (Qc) and a high release probability (Pr). Conversely, the secondary (2°Mn) type facilitates and has low and variable Qc and Pr. This functional duality matches well the distinct associated behaviors, with the 1°Mn providing the strong, singular C bend initiating escape and the 2°Mn conferring weaker, rhythmic contractions. Contributing to these functional distinctions is our identification of P/Q-type calcium channels mediating transmitter release in 1°Mns and N-type channels in 2°Mns. Remarkably, despite these functional and behavioral distinctions, all ∼15 individual synapses on each muscle cell are shared by a 1°Mn bouton and at least one 2°Mn bouton. This blueprint of synaptic sharing provides an efficient way of controlling two different behaviors at the level of a single postsynaptic cell.

SUBMITTER: Wen H 

PROVIDER: S-EPMC7585033 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-BSST1464 | biostudies-other
| S-EPMC2798059 | biostudies-literature
| S-EPMC3960171 | biostudies-literature
| S-EPMC4118878 | biostudies-literature
| S-EPMC8584164 | biostudies-literature
| S-EPMC3164782 | biostudies-literature
| S-EPMC3088577 | biostudies-literature
| S-EPMC3285184 | biostudies-literature
| S-EPMC4459078 | biostudies-literature
| S-EPMC7451861 | biostudies-literature