Unknown

Dataset Information

0

Dynamic Aqueous Multiphase Reaction System for One-Pot CRISPR-Cas12a-Based Ultrasensitive and Quantitative Molecular Diagnosis.


ABSTRACT: Recently, CRISPR-Cas technology has opened a new era of nucleic acid-based molecular diagnostics. However, current CRISPR-Cas-based nucleic acid biosensing has a lack of the quantitative detection ability and typically requires separate manual operations. Herein, we reported a dynamic aqueous multiphase reaction (DAMR) system for simple, sensitive and quantitative one-pot CRISPR-Cas12a based molecular diagnosis by taking advantage of density difference of sucrose concentration. In the DAMR system, recombinase polymerase amplification (RPA) and CRISPR-Cas12a derived fluorescent detection occurred in spatially separated but connected aqueous phases. Our DAMR system was utilized to quantitatively detect human papillomavirus (HPV) 16 and 18 DNAs with sensitivities of 10 and 100 copies within less than 1 h. Multiplex detection of HPV16/18 in clinical human swab samples were successfully achieved in the DAMR system using 3D-printed microfluidic device. Furthermore, we demonstrated that target DNA in real human plasma samples can be directly amplified and detected in the DAMR system without complicated sample pretreatment. As demonstrated, the DAMR system has shown great potential for development of next-generation point-of-care molecular diagnostics.

SUBMITTER: Yin K 

PROVIDER: S-EPMC7588651 | biostudies-literature | 2020 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dynamic Aqueous Multiphase Reaction System for One-Pot CRISPR-Cas12a-Based Ultrasensitive and Quantitative Molecular Diagnosis.

Yin Kun K   Ding Xiong X   Li Ziyue Z   Zhao Hui H   Cooper Kumarasen K   Liu Changchun C  

Analytical chemistry 20200522 12


Recently, CRISPR-Cas technology has opened a new era of nucleic acid-based molecular diagnostics. However, current CRISPR-Cas-based nucleic acid biosensing has a lack of the quantitative detection ability and typically requires separate manual operations. Herein, we reported a dynamic aqueous multiphase reaction (DAMR) system for simple, sensitive and quantitative one-pot CRISPR-Cas12a based molecular diagnosis by taking advantage of density difference of sucrose concentration. In the DAMR syste  ...[more]

Similar Datasets

| S-EPMC10782985 | biostudies-literature
| S-EPMC9339671 | biostudies-literature
| S-EPMC7481432 | biostudies-literature
| S-EPMC9201268 | biostudies-literature
| S-EPMC7501862 | biostudies-literature
| S-EPMC9016756 | biostudies-literature
| S-EPMC7773598 | biostudies-literature
| S-EPMC10913417 | biostudies-literature
| S-EPMC7239053 | biostudies-literature
| S-EPMC8580105 | biostudies-literature